Mingkai Xu | Aston University (original) (raw)
Papers by Mingkai Xu
We propose a new design of 25-GHz flat-top multichannel optical filter. The flat-top of optical f... more We propose a new design of 25-GHz flat-top multichannel optical filter. The flat-top of optical filters can improve to 2.288×10-11dB which is superior to that of 5 orders of previous study. The superior performance of dispersion and channel spacing isolation improve 73.5% and 94%, respectively, which compared with current available commercial products and previous study.
We propose a new design of 25-GHz flat-top multichannel optical filter. The flat-top of optical f... more We propose a new design of 25-GHz flat-top multichannel optical filter. The flat-top of optical filters can improve to 2.288×10-11dB which is superior to that of 5 orders of previous study. The superior performance of dispersion and channel spacing isolation improve 73.5% and 94%, respectively, which compared with previous study.
We propose a new design of 25-GHz flat-top multichannel optical filter. The flat-top of optical f... more We propose a new design of 25-GHz flat-top multichannel optical filter. The flat-top of optical filters can improve to 2.288x10-11dB which is superior to that of 5 orders of previous study. The superior performance of dispersion and channel spacing isolation improve 73.5% and 94%, respectively, which compared with previous study.
Plant and Soil, 2010
Conversion of native broadleaf forest (NF) and introduction of broadleaf species into monospecifi... more Conversion of native broadleaf forest (NF) and introduction of broadleaf species into monospecific Cunninghamia lanceolata plantations are silvicultural practices driven by the increasing demand for timber production. This study was conducted to evaluate the impacts of successive planting of C. lanceolata and mixed plantations (C. lanceolata-Michelia macclurei, CFM; C. lanceolata-Alnus cremastogyne, CFA; C. lanceolata-Kalopanax septemlobus, CFK) on microbial community diversity. Microbial biomass (MBC) was assessed using chloroform fumigation-extraction. Using denaturing gradient gel electrophoresis (DGGE), we examined the biodiversity within eubacterial (16S rRNA gene) and fungal (28S rRNA gene) species and two genes involved in N cycling: nifH and amoA. Microbial community diversities and microbial biomass decreased as NF was substituted by successive plantings of C. lanceolata plantations, whereas the trend reversed after introducing the broadleaf, M. macclurei, into pure C. lanceolata plantations. A strong positive correlation between MBC changes and total organic C (TOC), total organic N (TON), available N and extractable C (Cext) were seen, which suggests that MBC was tightly coupled with the content of soil organic matter. The Shannon index showed that bacterial diversity and two functional genes (nifH and amoA) diversities associated with monospecific C. lanceolata plantations were lower than that of NF or mixed C. lanceolata plantations, such as CFM and CFA, whereas the opposite was seen for fungal diversity. Bacterial diversity was positively correlated with pH, TOC, TON, Cext and NH 4+-N; while fungal diversity was positively correlated with C/N ratio and negatively correlated with pH. Both nitrogen fixing and ammonia oxidizing bacterial diversities were positively correlated with pH. Thus, soil pH was not only significantly positively correlated with bacterial diversity (r = 0.502, P nifH gene diversity (r = 0.564, P amoA gene diversity (r = 0.659, P r = − 0.505, P
Applied Microbiology and Biotechnology, 2009
To investigate the functional domains involved in the biological activity of staphylococcal enter... more To investigate the functional domains involved in the biological activity of staphylococcal enterotoxin (SEC2), a series of SEC2 mutants were constructed. Deletion of the last 77 amino acids at the C-terminus of SEC2 did not affect its native superantigen and fever activities, and further removal of the C-terminal residues reduced SEC2 activities significantly. On the other hand, the mutants lacking 18 or more N-terminal residues severely impaired superantigen activity. These data indicated that the functional regions for the biological activities of SEC2 were confined to N-terminal domain, further implied that the proper three-dimensional structure of SEC2 is not needed for its biological activities. Our results deliver valuable information that it is possible to design new SEC2 immunotherapeutic agents which have the superantigen activity and low molecular weight for permeability.
Applied Microbiology and Biotechnology, 2009
The superantigen staphylococcal enterotoxin C2 (SEC2) tremendously activate T lymphocytes bearing... more The superantigen staphylococcal enterotoxin C2 (SEC2) tremendously activate T lymphocytes bearing certain T-cell receptor Vβ domains when binding to MHC II molecules, which launches a powerful response of tumour inhibition in vitro as well as in vivo. However, the toxicity of SEC2 performed in clinic limited its broad application for immunotherapy. The previous studies suggested that the disulphide loop may be important for the toxicity of some SEs, which prompted us to investigate the potential roles of the disulphide loop in biological activity of SEC2. Site-directed mutagenesis was used to disturb the formation of the disulphide bond by substituting Ala or Ser for Cys-93 and Cys-110. The expressed mutants in Escherichia coli were used to determine their superantigen activity and toxicity. Results showed that all of the mutated proteins exhibited reduced abilities to induce T-cell proliferation and cytotoxic effects on tumour cells L929 and Hepa1-6, suggesting that the disulphide loop plays functional role in maintaining the maximal superantigen activity of SEC2. Furthermore, the toxicity assays in vivo showed that all of the mutants induced a reduced emetic and pyrogenic responses compared with native SEC2, which might be important for further construction of lowly toxic superantigen agent.
Cancer Immunology Immunotherapy, 2011
Recent studies suggested that the histidine residues at 118 and 122 play an important role for th... more Recent studies suggested that the histidine residues at 118 and 122 play an important role for the toxicity of staphylococcal enterotoxin C subtype 2 (SEC2), and the substitutions of both histidines with alanine can severely impair the fever activity of SEC2. We hypothesized that promising SEC2 antitumor agent with low toxicity and enhanced superantigen activity can be constructed by introducing related mutations at protein functional sites of SEC2. We showed that the SEC2 mutants H122A and H118A/H122A exhibited improved superantigen activity after introducing the point mutations at Thr20 and Gly22. A resultant mutant, named as SAM-3, has considerable abilities to inhibit the growth of H22 and Hepa1-6 tumor cells in vitro and colon 26 solid tumor in vivo. Furthermore, SAM-3 also exhibits significantly reduced toxicity compared with native SEC2. The study provides a novel strategy for designing promising superantigen immunotherapeutic agent. The constructed SEC2 mutant SAM-3 can be used as a powerful candidate for cancer immunotherapy and could compensate the deficiency caused by toxicity of native SEC2 in clinic.
Cancer Immunology Immunotherapy, 2009
Bacterial superantigen staphylococcal enterotoxins (SEs) tremendously stimulate polyclonal T cell... more Bacterial superantigen staphylococcal enterotoxins (SEs) tremendously stimulate polyclonal T cells bearing particular TCR Vβ domains when binding to MHC II molecules, suggesting that they could be a candidate of new antitumor agent. SEC2, an important member of superantigen family, has been used in clinical trial as an immuntherapy agent for cancer treatment in China, and obtained some encouraging effects. However, the presence of immunosuppression and endotoxic activity limits the therapeutic dosage of SEC2, and influences its antitumor effect in clinic. Therefore, the enhancement of superantigen activity and antitumor effect of SEC2 could effectively make compensation for the disadvantages mentioned above. In this study, a superantigen SEC2(T20L/G22E) mutant was generated by site-directed mutagenesis, and efficiently expressed in E. coli BL21(DE3). The results showed that SEC2(T20L/G22E) mutant exhibited a significantly enhanced superantigen activity and antitumor response, compared with native SEC2 in vitro. Further toxicity assay in vivo indicated that SEC2(T20L/G22E) mutant had no significant increase in emetic and pyrogenic activity compared with SEC2, which suggested that the mutant SEC2(T20L/G22E) could be used as a potentially powerful candidate for cancer immunotherapy, and could make compensation for the deficiency of native SEC2 in clinic.
Analytical Biochemistry, 2011
Potassium channel opener High-throughput screening a b s t r a c t
We propose a new design of 25-GHz flat-top multichannel optical filter. The flat-top of optical f... more We propose a new design of 25-GHz flat-top multichannel optical filter. The flat-top of optical filters can improve to 2.288×10-11dB which is superior to that of 5 orders of previous study. The superior performance of dispersion and channel spacing isolation improve 73.5% and 94%, respectively, which compared with current available commercial products and previous study.
We propose a new design of 25-GHz flat-top multichannel optical filter. The flat-top of optical f... more We propose a new design of 25-GHz flat-top multichannel optical filter. The flat-top of optical filters can improve to 2.288×10-11dB which is superior to that of 5 orders of previous study. The superior performance of dispersion and channel spacing isolation improve 73.5% and 94%, respectively, which compared with previous study.
We propose a new design of 25-GHz flat-top multichannel optical filter. The flat-top of optical f... more We propose a new design of 25-GHz flat-top multichannel optical filter. The flat-top of optical filters can improve to 2.288x10-11dB which is superior to that of 5 orders of previous study. The superior performance of dispersion and channel spacing isolation improve 73.5% and 94%, respectively, which compared with previous study.
Plant and Soil, 2010
Conversion of native broadleaf forest (NF) and introduction of broadleaf species into monospecifi... more Conversion of native broadleaf forest (NF) and introduction of broadleaf species into monospecific Cunninghamia lanceolata plantations are silvicultural practices driven by the increasing demand for timber production. This study was conducted to evaluate the impacts of successive planting of C. lanceolata and mixed plantations (C. lanceolata-Michelia macclurei, CFM; C. lanceolata-Alnus cremastogyne, CFA; C. lanceolata-Kalopanax septemlobus, CFK) on microbial community diversity. Microbial biomass (MBC) was assessed using chloroform fumigation-extraction. Using denaturing gradient gel electrophoresis (DGGE), we examined the biodiversity within eubacterial (16S rRNA gene) and fungal (28S rRNA gene) species and two genes involved in N cycling: nifH and amoA. Microbial community diversities and microbial biomass decreased as NF was substituted by successive plantings of C. lanceolata plantations, whereas the trend reversed after introducing the broadleaf, M. macclurei, into pure C. lanceolata plantations. A strong positive correlation between MBC changes and total organic C (TOC), total organic N (TON), available N and extractable C (Cext) were seen, which suggests that MBC was tightly coupled with the content of soil organic matter. The Shannon index showed that bacterial diversity and two functional genes (nifH and amoA) diversities associated with monospecific C. lanceolata plantations were lower than that of NF or mixed C. lanceolata plantations, such as CFM and CFA, whereas the opposite was seen for fungal diversity. Bacterial diversity was positively correlated with pH, TOC, TON, Cext and NH 4+-N; while fungal diversity was positively correlated with C/N ratio and negatively correlated with pH. Both nitrogen fixing and ammonia oxidizing bacterial diversities were positively correlated with pH. Thus, soil pH was not only significantly positively correlated with bacterial diversity (r = 0.502, P nifH gene diversity (r = 0.564, P amoA gene diversity (r = 0.659, P r = − 0.505, P
Applied Microbiology and Biotechnology, 2009
To investigate the functional domains involved in the biological activity of staphylococcal enter... more To investigate the functional domains involved in the biological activity of staphylococcal enterotoxin (SEC2), a series of SEC2 mutants were constructed. Deletion of the last 77 amino acids at the C-terminus of SEC2 did not affect its native superantigen and fever activities, and further removal of the C-terminal residues reduced SEC2 activities significantly. On the other hand, the mutants lacking 18 or more N-terminal residues severely impaired superantigen activity. These data indicated that the functional regions for the biological activities of SEC2 were confined to N-terminal domain, further implied that the proper three-dimensional structure of SEC2 is not needed for its biological activities. Our results deliver valuable information that it is possible to design new SEC2 immunotherapeutic agents which have the superantigen activity and low molecular weight for permeability.
Applied Microbiology and Biotechnology, 2009
The superantigen staphylococcal enterotoxin C2 (SEC2) tremendously activate T lymphocytes bearing... more The superantigen staphylococcal enterotoxin C2 (SEC2) tremendously activate T lymphocytes bearing certain T-cell receptor Vβ domains when binding to MHC II molecules, which launches a powerful response of tumour inhibition in vitro as well as in vivo. However, the toxicity of SEC2 performed in clinic limited its broad application for immunotherapy. The previous studies suggested that the disulphide loop may be important for the toxicity of some SEs, which prompted us to investigate the potential roles of the disulphide loop in biological activity of SEC2. Site-directed mutagenesis was used to disturb the formation of the disulphide bond by substituting Ala or Ser for Cys-93 and Cys-110. The expressed mutants in Escherichia coli were used to determine their superantigen activity and toxicity. Results showed that all of the mutated proteins exhibited reduced abilities to induce T-cell proliferation and cytotoxic effects on tumour cells L929 and Hepa1-6, suggesting that the disulphide loop plays functional role in maintaining the maximal superantigen activity of SEC2. Furthermore, the toxicity assays in vivo showed that all of the mutants induced a reduced emetic and pyrogenic responses compared with native SEC2, which might be important for further construction of lowly toxic superantigen agent.
Cancer Immunology Immunotherapy, 2011
Recent studies suggested that the histidine residues at 118 and 122 play an important role for th... more Recent studies suggested that the histidine residues at 118 and 122 play an important role for the toxicity of staphylococcal enterotoxin C subtype 2 (SEC2), and the substitutions of both histidines with alanine can severely impair the fever activity of SEC2. We hypothesized that promising SEC2 antitumor agent with low toxicity and enhanced superantigen activity can be constructed by introducing related mutations at protein functional sites of SEC2. We showed that the SEC2 mutants H122A and H118A/H122A exhibited improved superantigen activity after introducing the point mutations at Thr20 and Gly22. A resultant mutant, named as SAM-3, has considerable abilities to inhibit the growth of H22 and Hepa1-6 tumor cells in vitro and colon 26 solid tumor in vivo. Furthermore, SAM-3 also exhibits significantly reduced toxicity compared with native SEC2. The study provides a novel strategy for designing promising superantigen immunotherapeutic agent. The constructed SEC2 mutant SAM-3 can be used as a powerful candidate for cancer immunotherapy and could compensate the deficiency caused by toxicity of native SEC2 in clinic.
Cancer Immunology Immunotherapy, 2009
Bacterial superantigen staphylococcal enterotoxins (SEs) tremendously stimulate polyclonal T cell... more Bacterial superantigen staphylococcal enterotoxins (SEs) tremendously stimulate polyclonal T cells bearing particular TCR Vβ domains when binding to MHC II molecules, suggesting that they could be a candidate of new antitumor agent. SEC2, an important member of superantigen family, has been used in clinical trial as an immuntherapy agent for cancer treatment in China, and obtained some encouraging effects. However, the presence of immunosuppression and endotoxic activity limits the therapeutic dosage of SEC2, and influences its antitumor effect in clinic. Therefore, the enhancement of superantigen activity and antitumor effect of SEC2 could effectively make compensation for the disadvantages mentioned above. In this study, a superantigen SEC2(T20L/G22E) mutant was generated by site-directed mutagenesis, and efficiently expressed in E. coli BL21(DE3). The results showed that SEC2(T20L/G22E) mutant exhibited a significantly enhanced superantigen activity and antitumor response, compared with native SEC2 in vitro. Further toxicity assay in vivo indicated that SEC2(T20L/G22E) mutant had no significant increase in emetic and pyrogenic activity compared with SEC2, which suggested that the mutant SEC2(T20L/G22E) could be used as a potentially powerful candidate for cancer immunotherapy, and could make compensation for the deficiency of native SEC2 in clinic.
Analytical Biochemistry, 2011
Potassium channel opener High-throughput screening a b s t r a c t