Makenzie L . Jane | Augusta University (original) (raw)

Makenzie L . Jane

Uploads

Papers by Makenzie L . Jane

Research paper thumbnail of Cytoskeletal adaptation following long-term dysregulation of actomyosin in neuronal processes

Microtubules, intermediate filaments, and actin are cytoskeletal polymer networks found within th... more Microtubules, intermediate filaments, and actin are cytoskeletal polymer networks found within the cell. While each has unique functions, all the cytoskeletal elements must work together for cellular mechanics to be fully operative. This is achieved through crosstalk mechanisms whereby the different networks influence each other through signaling pathways and direct interactions. Because crosstalk can be complex, it is possible for perturbations in one cytoskeletal element to affect the others in ways that are difficult to predict. Here we investigated how long-term changes to the actin cytoskeleton affect microtubules and intermediate filaments. Reducing F-actin or actomyosin contractility increased acetylated microtubules and intermediate filament expression, with the effect being significantly more pronounced in neuronal processes. Changes to microtubules were completely reversible if F-actin and myosin activity is restored. Moreover, the altered microtubules in neuronal processe...

Research paper thumbnail of Nonmuscle myosin 2 filaments are processive in cells

Research paper thumbnail of Non-muscle myosin 2 filaments are processive in cells

Directed transport of cellular components is often dependent on the processive movements of cytos... more Directed transport of cellular components is often dependent on the processive movements of cytoskeletal motors. Myosin 2 motors predominantly engage actin filaments of opposing orientation to drive contractile events, and are therefore not traditionally viewed as processive. However, recentin vitroexperiments with purified non-muscle myosin 2 (NM2) demonstrated myosin 2 filaments could move processively. Here, we establish processivity as a cellular property of NM2. Processive runs in central nervous system-derived CAD cells are most apparent as processive movements on bundled actin in protrusions that terminate at the leading edge. We find that processive velocitiesin vivoare consistent within vitromeasurements. NM2 makes these processive runs in its filamentous form against lamellipodia retrograde flow, though anterograde movement can still occur in the absence of actin dynamics. Comparing the processivity of NM2 isoforms, we find that NM2A moves slightly faster than NM2B. Finall...

Research paper thumbnail of Cytoskeletal adaptation following long-term dysregulation of actomyosin in neuronal processes

Microtubules, intermediate filaments, and actin are cytoskeletal polymer networks found within th... more Microtubules, intermediate filaments, and actin are cytoskeletal polymer networks found within the cell. While each has unique functions, all the cytoskeletal elements must work together for cellular mechanics to be fully operative. This is achieved through crosstalk mechanisms whereby the different networks influence each other through signaling pathways and direct interactions. Because crosstalk can be complex, it is possible for perturbations in one cytoskeletal element to affect the others in ways that are difficult to predict. Here we investigated how long-term changes to the actin cytoskeleton affect microtubules and intermediate filaments. Reducing F-actin or actomyosin contractility increased acetylated microtubules and intermediate filament expression, with the effect being significantly more pronounced in neuronal processes. Changes to microtubules were completely reversible if F-actin and myosin activity is restored. Moreover, the altered microtubules in neuronal processe...

Research paper thumbnail of Nonmuscle myosin 2 filaments are processive in cells

Research paper thumbnail of Non-muscle myosin 2 filaments are processive in cells

Directed transport of cellular components is often dependent on the processive movements of cytos... more Directed transport of cellular components is often dependent on the processive movements of cytoskeletal motors. Myosin 2 motors predominantly engage actin filaments of opposing orientation to drive contractile events, and are therefore not traditionally viewed as processive. However, recentin vitroexperiments with purified non-muscle myosin 2 (NM2) demonstrated myosin 2 filaments could move processively. Here, we establish processivity as a cellular property of NM2. Processive runs in central nervous system-derived CAD cells are most apparent as processive movements on bundled actin in protrusions that terminate at the leading edge. We find that processive velocitiesin vivoare consistent within vitromeasurements. NM2 makes these processive runs in its filamentous form against lamellipodia retrograde flow, though anterograde movement can still occur in the absence of actin dynamics. Comparing the processivity of NM2 isoforms, we find that NM2A moves slightly faster than NM2B. Finall...

Log In