Ahmed Ibrahim Taloba | Assiut University (original) (raw)

Uploads

Papers by Ahmed Ibrahim Taloba

Research paper thumbnail of Speedy Algorithm for Clustering Imbalanced Data

Fast Balanced K-means (FBK-means) clustering approach is one of the most important consideration ... more Fast Balanced K-means (FBK-means) clustering approach is one of the most important consideration when one want to solve clustering problem of balanced data. Mostly, numerical experiments show that FBK-means is faster and more accurate than the K-means algorithm, Genetic Algorithm, and Bee algorithm. FBK-means Algorithm needs few distance calculations and fewer computational time while keeping the same clustering results. However, the FBK-means algorithm doesn’t give good results with imbalanced data. To resolve this shortage, a more efficient clustering algorithm, namely Fast K-means (FK-means), developed in this paper. This algorithm not only give the best results as in the FBK-means approach but also needs lower computational time in case of imbalance data.

Research paper thumbnail of Differential Search Algorithm-based Parametric Optimization of Fuzzy Generalized Eigenvalue Proximal Support Vector Machine

Support Vector Machine (SVM) is an effective model for many classification problems. However, SVM... more Support Vector Machine (SVM) is an effective model for many classification problems. However, SVM needs the solution of a quadratic program which require specialized code. In addition, SVM has many parameters, which affects the performance of SVM classi?er. Recently, the Generalized Eigenvalue Proximal SVM (GEPSVM) has been presented to solve the SVM complexity. In real world applications data may affected by error or noise, working with this data is a challenging problem. In this paper, an approach has been proposed to overcome this problem. This method is called DSA-GEPSVM. The main improvements are carried out based on the following: 1) a novel fuzzy values in the linear case. 2) A new Kernel function in the nonlinear case. 3) Differential Search Algorithm (DSA) is reformulated to ?nd near optimal values of the GEPSVM parameters and its kernel parameters. The experimental results show that the proposed approach is able to find the suitable parameter values, and has higher classification accuracy compared with some other algorithms.

Research paper thumbnail of Fast Efficient Clustering Algorithm for Balanced Data

The Cluster analysis is a major technique for statistical analysis, machine learning, pattern rec... more The Cluster analysis is a major technique for statistical analysis, machine learning, pattern recognition, data mining, image analysis and bioinformatics. K-means algorithm is one of the most important clustering algorithms. However, the kmeans algorithm needs a large amount of computational time for handling large data sets. In this paper, we developed more efficient clustering algorithm to overcome this deficiency named Fast Balanced k-means (FBK-means). This algorithm is not only yields the best clustering results as in the k-means algorithm but also requires less computational time. The algorithm is working well in the case of balanced data.

Research paper thumbnail of Outlier Detection using Improved Genetic K-means

The outlier detection problem in some cases is similar to the classification problem. For example... more The outlier detection problem in some cases is similar to the classification problem. For example, the main concern of clustering-based outlier detection algorithms is to find clusters and outliers, which are often regarded as noise that should be removed in order to make more reliable clustering.

Research paper thumbnail of An Effective Evolutionary Clustering Algorithm: Hepatitis C case study

Clustering analysis plays an important role in scientific research and commercial application. K-... more Clustering analysis plays an important role in scientific research and commercial application. K-means algorithm is a widely used partition method in clustering. However, it is known that the K-means algorithm may get stuck at suboptimal solutions, depending on the choice of the initial cluster centers. In this article, we propose a technique to handle large scale data, which can select initial clustering center purposefully using Genetic algorithms (GAs), reduce the sensitivity to isolated point, avoid dissevering big cluster, and overcome deflexion of data in some degree that caused by the disproportion in data partitioning owing to adoption of multi-sampling.

Research paper thumbnail of Speedy Algorithm for Clustering Imbalanced Data

Fast Balanced K-means (FBK-means) clustering approach is one of the most important consideration ... more Fast Balanced K-means (FBK-means) clustering approach is one of the most important consideration when one want to solve clustering problem of balanced data. Mostly, numerical experiments show that FBK-means is faster and more accurate than the K-means algorithm, Genetic Algorithm, and Bee algorithm. FBK-means Algorithm needs few distance calculations and fewer computational time while keeping the same clustering results. However, the FBK-means algorithm doesn’t give good results with imbalanced data. To resolve this shortage, a more efficient clustering algorithm, namely Fast K-means (FK-means), developed in this paper. This algorithm not only give the best results as in the FBK-means approach but also needs lower computational time in case of imbalance data.

Research paper thumbnail of Differential Search Algorithm-based Parametric Optimization of Fuzzy Generalized Eigenvalue Proximal Support Vector Machine

Support Vector Machine (SVM) is an effective model for many classification problems. However, SVM... more Support Vector Machine (SVM) is an effective model for many classification problems. However, SVM needs the solution of a quadratic program which require specialized code. In addition, SVM has many parameters, which affects the performance of SVM classi?er. Recently, the Generalized Eigenvalue Proximal SVM (GEPSVM) has been presented to solve the SVM complexity. In real world applications data may affected by error or noise, working with this data is a challenging problem. In this paper, an approach has been proposed to overcome this problem. This method is called DSA-GEPSVM. The main improvements are carried out based on the following: 1) a novel fuzzy values in the linear case. 2) A new Kernel function in the nonlinear case. 3) Differential Search Algorithm (DSA) is reformulated to ?nd near optimal values of the GEPSVM parameters and its kernel parameters. The experimental results show that the proposed approach is able to find the suitable parameter values, and has higher classification accuracy compared with some other algorithms.

Research paper thumbnail of Fast Efficient Clustering Algorithm for Balanced Data

The Cluster analysis is a major technique for statistical analysis, machine learning, pattern rec... more The Cluster analysis is a major technique for statistical analysis, machine learning, pattern recognition, data mining, image analysis and bioinformatics. K-means algorithm is one of the most important clustering algorithms. However, the kmeans algorithm needs a large amount of computational time for handling large data sets. In this paper, we developed more efficient clustering algorithm to overcome this deficiency named Fast Balanced k-means (FBK-means). This algorithm is not only yields the best clustering results as in the k-means algorithm but also requires less computational time. The algorithm is working well in the case of balanced data.

Research paper thumbnail of Outlier Detection using Improved Genetic K-means

The outlier detection problem in some cases is similar to the classification problem. For example... more The outlier detection problem in some cases is similar to the classification problem. For example, the main concern of clustering-based outlier detection algorithms is to find clusters and outliers, which are often regarded as noise that should be removed in order to make more reliable clustering.

Research paper thumbnail of An Effective Evolutionary Clustering Algorithm: Hepatitis C case study

Clustering analysis plays an important role in scientific research and commercial application. K-... more Clustering analysis plays an important role in scientific research and commercial application. K-means algorithm is a widely used partition method in clustering. However, it is known that the K-means algorithm may get stuck at suboptimal solutions, depending on the choice of the initial cluster centers. In this article, we propose a technique to handle large scale data, which can select initial clustering center purposefully using Genetic algorithms (GAs), reduce the sensitivity to isolated point, avoid dissevering big cluster, and overcome deflexion of data in some degree that caused by the disproportion in data partitioning owing to adoption of multi-sampling.