dana kadadou | American University of Sharjah (original) (raw)

Papers by dana kadadou

Research paper thumbnail of Enhanced antifouling and separation capabilities of polydopamine@Ce-MOF functionalized PES ultrafiltration membrane

npj clean water, Feb 8, 2024

The need for antifouling membranes is substantial due to fouling's negative impact on the effecti... more The need for antifouling membranes is substantial due to fouling's negative impact on the effectiveness and durability of ultrafiltration membranes. In recent times, Metal-Organic Frameworks (MOFs) have emerged as effective additives for crafting ultrafiltration (UF) membranes. However, to harness their benefits and mitigate their drawbacks, a well-considered approach is imperative. In this work, polyethersulfone (PES) UF membranes were tailored with polydopamine (PDA)-modified cerium (Ce)-MOF (PDA@Ce-MOF) to achieve satisfactory antifouling properties and to remove biological macromolecules such as bovine serum albumin (BSA) and humic acid (HA) from wastewater. The non-solvent induced phase separation (NIPS) method was used to simultaneously fabricate the membrane and modify it with different PDA@Ce-MOF concentrations ranging from 0.05 to 0.50 wt.%. Results showed significant improvements on the membrane's morphology, hydrophilicity, porosity and pore size at 0.10 wt.% loading of PDA@Ce-MOF. The synergistic effect of the PDA and Ce-MOF on the membrane improved the pure water flux (337 L m −2 h −1) and filtration performance in the filtration of Bovine serum albumin (BSA) and humic acid (HA) reporting 145 L m −2 h −1 and 98% rejection, and 164 L m −2 h −1 and 88% rejection; respectively. Further, water-attracting functional moieties of PDA@Ce-MOF hindered the deposition of BSA protein on the membrane surface, resulting in an excellent flux recovery ratio (FRR) of~87%, alongside mitigated irreversible fouling.

Research paper thumbnail of Applications of graphene oxide in reverse osmosis membranes

Research paper thumbnail of Binary hetero-structured PVDF/TiO2@MXene composite membranes for the removal of antibiotics from wastewater

Journal of environmental chemical engineering, Jun 1, 2024

Research paper thumbnail of Research advances in nuclear wastewater treatment using conventional and hybrid technologies: Towards sustainable wastewater reuse and recovery

Journal of Water Process Engineering

Research paper thumbnail of Detection of SARS-CoV-2 in clinical and environmental samples using highly sensitive reduced graphene oxide (rGO)-based biosensor

Chemical Engineering Journal

Quantitative RT-PCR (qRT-PCR) is the most commonly used diagnostic tool for SARS-CoV-2 detection ... more Quantitative RT-PCR (qRT-PCR) is the most commonly used diagnostic tool for SARS-CoV-2 detection during the COVID-19 pandemic. Despite its sensitivity and accuracy, qRT-PCR is a time-consuming method that requires expensive laboratories with highly trained personnel. In this work, on-site detection of SARS-CoV-2 in municipal wastewater was investigated for the first time. The wastewater was unprocessed and did not require any prefiltration, prior spiking with virus, or viral concentration in order to be suitable for use with the biosensor. The prototype reported here is a reduced graphene oxide (rGO)-based biosensor for rapid, sensitive and selective detection of SARS-CoV-2. The biosensor achieved a limit of detection (LOD) of 0.5 fg/mL in phosphate-buffered saline (PBS) and exhibited specificity when exposed to various analytes. The response time was measured to be around 240 ms. To further explore the capabilities of the biosensor in real clinical and municipal wastewater samples, three different tests were performed to determine the presence or absence of the virus: (i) qRT-PCR, (ii) a rapid antigen-based commercially available test (COVID-19 Test Strips), and (iii) the biosensor constructed and reported here. Taken together, our results demonstrate that a biosensor that can detect SARS-CoV-2 in clinical samples as well as unfiltered and unprocessed municipal wastewater is feasible.

Research paper thumbnail of Optimization of an rGO-based biosensor for the sensitive detection of bovine serum albumin: Effect of electric field on detection capability

Chemosphere

Despite significant progress in the field of biosensing, the impact of electric field on biosenso... more Despite significant progress in the field of biosensing, the impact of electric field on biosensor detection capability and the feasibility of the biosensor application in wastewater has yet to be investigated. The objective of this study was to develop a low-cost, highly sensitive, and selective reduced graphene oxide (rGO)-based biosensor. The constructed biosensor consists of an in-house prepared GO and a four-terminal Kelvin sensing. Spin-coating was chosen as the deposition technique and results revealed an optimal GO number of layers and concentration of 7 and 2 mg/mL, respectively. Experiments to determine the effects of electric field on the performance of the biosensor showed significant changes in the biosensor surface, also presenting a direct impact on the biosensor functionality, such that the biosensor showed an increase in limit of detection (LOD) from 1 to 106 fg/mL when the applied voltage was increased from 0.0008 to 0.2 V. Furthermore, this study successfully explores a pilot scale setup, mimicking wastewater flow through sewage pipelines. The demonstrated improvements in the detection capability and sensitivity of this biosensor at optimized testing conditions make it a promising candidate for further development and deployment for the detection of protein analytes present at very low concentrations in aqueous solutions. In addition, the application of this biosensor could be extended to the detection of protein analytes of interest (such as the spike protein of SARS-CoV-2) in much more complex solutions, like wastewater.

Research paper thumbnail of Recent advances in the biosensors application for the detection of bacteria and viruses in wastewater

Journal of Environmental Chemical Engineering, 2022

The presence of disease-causing pathogens in wastewater can provide an excellent diagnostic tool ... more The presence of disease-causing pathogens in wastewater can provide an excellent diagnostic tool for infectious diseases. Biosensors are far superior to conventional methods used for regular infection screening and surveillance testing. They are rapid, sensitive, inexpensive portable and carry no risk of exposure in their detection schemes. In this context, this review summarizes the most recently developed biosensors for the detection of bacteria and viruses in wastewater. The review also provides information on the new detection methods aimed at screening for SARS-CoV-2, which has now caused more than 4 million deaths. In addition, the review highlights the potential behind on-line and real-time detection of pathogens in wastewater pipelines. Most of the biosensors reported were not targeted to wastewater samples due to the complexity of the matrix. However, this review highlights on the performance factors of recently developed biosensors and discusses the importance of nanotechnology in amplifying the output signals, which in turn increases the accuracy and reliability of biosensors. Current research on the applicability of biosensors in wastewater promises a dramatic change to the conventional approach in the field of medical screening.

Research paper thumbnail of Emerging contaminants in the water bodies of the Middle East and North Africa (MENA): A critical review

Science of The Total Environment

Research paper thumbnail of Detection and removal of waterborne enteric viruses from wastewater: A comprehensive review

Journal of Environmental Chemical Engineering

Research paper thumbnail of Enhanced antifouling and separation capabilities of polydopamine@Ce-MOF functionalized PES ultrafiltration membrane

npj clean water, Feb 8, 2024

The need for antifouling membranes is substantial due to fouling's negative impact on the effecti... more The need for antifouling membranes is substantial due to fouling's negative impact on the effectiveness and durability of ultrafiltration membranes. In recent times, Metal-Organic Frameworks (MOFs) have emerged as effective additives for crafting ultrafiltration (UF) membranes. However, to harness their benefits and mitigate their drawbacks, a well-considered approach is imperative. In this work, polyethersulfone (PES) UF membranes were tailored with polydopamine (PDA)-modified cerium (Ce)-MOF (PDA@Ce-MOF) to achieve satisfactory antifouling properties and to remove biological macromolecules such as bovine serum albumin (BSA) and humic acid (HA) from wastewater. The non-solvent induced phase separation (NIPS) method was used to simultaneously fabricate the membrane and modify it with different PDA@Ce-MOF concentrations ranging from 0.05 to 0.50 wt.%. Results showed significant improvements on the membrane's morphology, hydrophilicity, porosity and pore size at 0.10 wt.% loading of PDA@Ce-MOF. The synergistic effect of the PDA and Ce-MOF on the membrane improved the pure water flux (337 L m −2 h −1) and filtration performance in the filtration of Bovine serum albumin (BSA) and humic acid (HA) reporting 145 L m −2 h −1 and 98% rejection, and 164 L m −2 h −1 and 88% rejection; respectively. Further, water-attracting functional moieties of PDA@Ce-MOF hindered the deposition of BSA protein on the membrane surface, resulting in an excellent flux recovery ratio (FRR) of~87%, alongside mitigated irreversible fouling.

Research paper thumbnail of Applications of graphene oxide in reverse osmosis membranes

Research paper thumbnail of Binary hetero-structured PVDF/TiO2@MXene composite membranes for the removal of antibiotics from wastewater

Journal of environmental chemical engineering, Jun 1, 2024

Research paper thumbnail of Research advances in nuclear wastewater treatment using conventional and hybrid technologies: Towards sustainable wastewater reuse and recovery

Journal of Water Process Engineering

Research paper thumbnail of Detection of SARS-CoV-2 in clinical and environmental samples using highly sensitive reduced graphene oxide (rGO)-based biosensor

Chemical Engineering Journal

Quantitative RT-PCR (qRT-PCR) is the most commonly used diagnostic tool for SARS-CoV-2 detection ... more Quantitative RT-PCR (qRT-PCR) is the most commonly used diagnostic tool for SARS-CoV-2 detection during the COVID-19 pandemic. Despite its sensitivity and accuracy, qRT-PCR is a time-consuming method that requires expensive laboratories with highly trained personnel. In this work, on-site detection of SARS-CoV-2 in municipal wastewater was investigated for the first time. The wastewater was unprocessed and did not require any prefiltration, prior spiking with virus, or viral concentration in order to be suitable for use with the biosensor. The prototype reported here is a reduced graphene oxide (rGO)-based biosensor for rapid, sensitive and selective detection of SARS-CoV-2. The biosensor achieved a limit of detection (LOD) of 0.5 fg/mL in phosphate-buffered saline (PBS) and exhibited specificity when exposed to various analytes. The response time was measured to be around 240 ms. To further explore the capabilities of the biosensor in real clinical and municipal wastewater samples, three different tests were performed to determine the presence or absence of the virus: (i) qRT-PCR, (ii) a rapid antigen-based commercially available test (COVID-19 Test Strips), and (iii) the biosensor constructed and reported here. Taken together, our results demonstrate that a biosensor that can detect SARS-CoV-2 in clinical samples as well as unfiltered and unprocessed municipal wastewater is feasible.

Research paper thumbnail of Optimization of an rGO-based biosensor for the sensitive detection of bovine serum albumin: Effect of electric field on detection capability

Chemosphere

Despite significant progress in the field of biosensing, the impact of electric field on biosenso... more Despite significant progress in the field of biosensing, the impact of electric field on biosensor detection capability and the feasibility of the biosensor application in wastewater has yet to be investigated. The objective of this study was to develop a low-cost, highly sensitive, and selective reduced graphene oxide (rGO)-based biosensor. The constructed biosensor consists of an in-house prepared GO and a four-terminal Kelvin sensing. Spin-coating was chosen as the deposition technique and results revealed an optimal GO number of layers and concentration of 7 and 2 mg/mL, respectively. Experiments to determine the effects of electric field on the performance of the biosensor showed significant changes in the biosensor surface, also presenting a direct impact on the biosensor functionality, such that the biosensor showed an increase in limit of detection (LOD) from 1 to 106 fg/mL when the applied voltage was increased from 0.0008 to 0.2 V. Furthermore, this study successfully explores a pilot scale setup, mimicking wastewater flow through sewage pipelines. The demonstrated improvements in the detection capability and sensitivity of this biosensor at optimized testing conditions make it a promising candidate for further development and deployment for the detection of protein analytes present at very low concentrations in aqueous solutions. In addition, the application of this biosensor could be extended to the detection of protein analytes of interest (such as the spike protein of SARS-CoV-2) in much more complex solutions, like wastewater.

Research paper thumbnail of Recent advances in the biosensors application for the detection of bacteria and viruses in wastewater

Journal of Environmental Chemical Engineering, 2022

The presence of disease-causing pathogens in wastewater can provide an excellent diagnostic tool ... more The presence of disease-causing pathogens in wastewater can provide an excellent diagnostic tool for infectious diseases. Biosensors are far superior to conventional methods used for regular infection screening and surveillance testing. They are rapid, sensitive, inexpensive portable and carry no risk of exposure in their detection schemes. In this context, this review summarizes the most recently developed biosensors for the detection of bacteria and viruses in wastewater. The review also provides information on the new detection methods aimed at screening for SARS-CoV-2, which has now caused more than 4 million deaths. In addition, the review highlights the potential behind on-line and real-time detection of pathogens in wastewater pipelines. Most of the biosensors reported were not targeted to wastewater samples due to the complexity of the matrix. However, this review highlights on the performance factors of recently developed biosensors and discusses the importance of nanotechnology in amplifying the output signals, which in turn increases the accuracy and reliability of biosensors. Current research on the applicability of biosensors in wastewater promises a dramatic change to the conventional approach in the field of medical screening.

Research paper thumbnail of Emerging contaminants in the water bodies of the Middle East and North Africa (MENA): A critical review

Science of The Total Environment

Research paper thumbnail of Detection and removal of waterborne enteric viruses from wastewater: A comprehensive review

Journal of Environmental Chemical Engineering