guang zhaohui | Fgjyju - Academia.edu (original) (raw)

guang zhaohui

Address: Harbin, Heilongjiang, China

less

Uploads

Papers by guang zhaohui

Research paper thumbnail of REVIEW Open Access EGFR inhibition in non-small cell lung cancer: current evidence and future directions

EGFR inhibition has emerged to be an important strategy in the treatment of non-small cell lung c... more EGFR inhibition has emerged to be an important strategy in the treatment of non-small cell lung cancer (NSCLC). Small molecule tyrosine kinase inhibitors (TKIs) and mono-clonal antibodies (mAbs) to the EGFR have been tested in multiple large randomized phase III studies alone or combined with chemotherapy, as well as small phase I-II studies which investigated their efficacy as radiosensitizers when combined with radiotherapy. In this review, we described the current clinical outcome after treatment with EGFR TKIs and mAbs alone or combined with chemotherapy in advanced stage NSCLC, as well as the early findings in feasibility/phase I or II studies regarding to whether EGFR TKI or mAb can be safely and effectively combined with radiotherapy in the treatment of locally advanced NSCLC. Furthermore, we explore the potential predictive biomarkers for response to EGFR TKIs or mAbs in NSCLC patients based on the findings in the current clinical trials; the mechanisms of resistance to EGFR inhibition; and the strategies of augmenting the antitumor activity of the EGFR inhibitors alone or when combined with chemotherapy or radiotherapy.

Research paper thumbnail of Grid Computing in China

Journal of Grid Computing, 2004

Molecular target therapies using first-generation, reversible epidermal growth factor receptor (E... more Molecular target therapies using first-generation, reversible epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI), such as gefitinib or erlotinib, have been shown to be effective for patients with non-small cell lung cancer (NSCLC) who harbor activating mutations in EGFR. However, these patients eventually develop resistance to the reversible TKIs, and this has led to the development of second-generation, irreversible EGFR inhibitors. Currently, the mechanism of acquired resistance to irreversible EGFR inhibitors is not clear. Using an in vitro cell culture system, we modeled the acquired resistance to first-line treatment with second-generation EGFR-TKIs using an EGFR-mutant NSCLC cell line. Here, we report a mechanism of resistance involving T790M secondary mutation as well as a corresponding clinical case. The results of these findings suggest that inhibition of EGFR by currently available second-generation EGFR-TKIs may not be sufficient to physiologically prevent the emergence of cells that are still dependent on EGFR signaling. This finding bears important implications on the limitations of currently available second-generation EGFR-TKIs. Mol Cancer Ther; 11(3); 784-91. Ó2012 AACR.

Research paper thumbnail of REVIEW Open Access EGFR inhibition in non-small cell lung cancer: current evidence and future directions

EGFR inhibition has emerged to be an important strategy in the treatment of non-small cell lung c... more EGFR inhibition has emerged to be an important strategy in the treatment of non-small cell lung cancer (NSCLC). Small molecule tyrosine kinase inhibitors (TKIs) and mono-clonal antibodies (mAbs) to the EGFR have been tested in multiple large randomized phase III studies alone or combined with chemotherapy, as well as small phase I-II studies which investigated their efficacy as radiosensitizers when combined with radiotherapy. In this review, we described the current clinical outcome after treatment with EGFR TKIs and mAbs alone or combined with chemotherapy in advanced stage NSCLC, as well as the early findings in feasibility/phase I or II studies regarding to whether EGFR TKI or mAb can be safely and effectively combined with radiotherapy in the treatment of locally advanced NSCLC. Furthermore, we explore the potential predictive biomarkers for response to EGFR TKIs or mAbs in NSCLC patients based on the findings in the current clinical trials; the mechanisms of resistance to EGFR inhibition; and the strategies of augmenting the antitumor activity of the EGFR inhibitors alone or when combined with chemotherapy or radiotherapy.

Research paper thumbnail of Grid Computing in China

Journal of Grid Computing, 2004

Molecular target therapies using first-generation, reversible epidermal growth factor receptor (E... more Molecular target therapies using first-generation, reversible epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI), such as gefitinib or erlotinib, have been shown to be effective for patients with non-small cell lung cancer (NSCLC) who harbor activating mutations in EGFR. However, these patients eventually develop resistance to the reversible TKIs, and this has led to the development of second-generation, irreversible EGFR inhibitors. Currently, the mechanism of acquired resistance to irreversible EGFR inhibitors is not clear. Using an in vitro cell culture system, we modeled the acquired resistance to first-line treatment with second-generation EGFR-TKIs using an EGFR-mutant NSCLC cell line. Here, we report a mechanism of resistance involving T790M secondary mutation as well as a corresponding clinical case. The results of these findings suggest that inhibition of EGFR by currently available second-generation EGFR-TKIs may not be sufficient to physiologically prevent the emergence of cells that are still dependent on EGFR signaling. This finding bears important implications on the limitations of currently available second-generation EGFR-TKIs. Mol Cancer Ther; 11(3); 784-91. Ó2012 AACR.

Log In