Luke Hillary | Bangor University (original) (raw)

Papers by Luke Hillary

Research paper thumbnail of SARS-CoV-2 qPCR and water chemistry data from wastewater at six sites in England and Wales between March and July 2020, with associated Covid-19 positive test and related-death data collated from other sources

Concentrations of SARS-CoV-2 RNA and physichochemical data on wastewater samples collected from s... more Concentrations of SARS-CoV-2 RNA and physichochemical data on wastewater samples collected from six sites across England and Wales between March and July 2020. Also included are the number of COVID-19 positive tests and COVID-19 related deaths for the same period collated from publicly available records. COVID-19 data relate to the lower tier local authority that the wastewater treatment plant was located within.

Research paper thumbnail of Diverse soil RNA viral communities have the potential to influence grassland ecosystems across multiple trophic levels

Grassland ecosystems form 30-40%1 of total land cover and provide essential ecosystem services, i... more Grassland ecosystems form 30-40%1 of total land cover and provide essential ecosystem services, including food production, flood mitigation and carbon storage2. Their productivity is closely related to soil microbial communities3, yet the role of viruses within these critical ecosystems is currently undercharacterised4 and in particular, our knowledge of soil RNA viruses is significantly limited5. Here, we applied viromics6 to characterise soil RNA viral communities along an altitudinal productivity gradient of peat, managed grassland and coastal soils. We identified 3,462 viral operational taxonomic units (vOTUs) and assessed their spatial distribution, phylogenetic diversity and potential host ranges. Soil types exhibited showed minimal similarity in viral community composition, but with >10-fold more vOTUs shared between managed grassland soils when compared with peat or coastal soils. Phylogenetic analyses of viral sequences predicted broad host ranges including bacteria, pla...

Research paper thumbnail of Correction: Farkas et al. Concentration and Quantification of SARS-CoV-2 RNA in Wastewater Using Polyethylene Glycol-Based Concentration and qRT-PCR. Methods Protoc. 2021, 4, 17

Methods and Protocols, 2021

This article is an open access article distributed under the terms and conditions of the Creative... more This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY

Research paper thumbnail of Viral indicators for tracking domestic wastewater contamination in the aquatic environment

Water Research, 2020

Waterborne enteric viruses are an emerging cause of disease outbreaks and represent a major threa... more Waterborne enteric viruses are an emerging cause of disease outbreaks and represent a major threat to global public health. Enteric viruses may originate from human wastewater and can undergo rapid transport through aquatic environments with minimal decay. Surveillance and source apportionment of enteric viruses in environmental waters is therefore essential for accurate risk management. However, individual monitoring of the >100 enteric viral strains that have been identified as aquatic contaminants is unfeasible. Instead, viral indicators are often used for quantitative assessments of wastewater contamination, viral decay and transport in water. An ideal indicator for tracking wastewater contamination should be (i) easy to detect and quantify, (ii) source-specific, (iii) resistant to wastewater treatment processes, and (iv) persistent in the aquatic environment, with similar behaviour to viral pathogens. Here, we conducted a comprehensive review of 127 peer-reviewed publications, to critically evaluate the effectiveness of several viral indicators of wastewater pollution, including common enteric viruses (mastadenoviruses, polyomaviruses, and Aichi viruses), the pepper mild mottle virus (PMMoV), and gut-associated bacteriophages (Type II/III FRNA phages and phages infecting human Bacteroides species, including crAssphage). Our analysis suggests that overall, human mastadenoviruses have the greatest potential to indicate contamination by domestic wastewater due to their easy detection, culturability, and high prevalence in wastewater and in the polluted environment. Aichi virus, crAssphage and PMMoV are also widely detected in wastewater and in the environment, and may be used as molecular markers for human-derived contamination. We conclude that viral indicators are suitable for the long-term monitoring of viral contamination in freshwater and marine environments and that these should be implemented within monitoring programmes to provide a holistic assessment of microbiological water quality and wastewater-based epidemiology, improve current risk management strategies and protect global human health.

Research paper thumbnail of Concentration and Quantification of SARS-CoV-2 RNA in Wastewater Using Polyethylene Glycol-Based Concentration and qRT-PCR

Methods and Protocols, 2021

Wastewater-based epidemiology has become an important tool for the surveillance of SARS-CoV-2 out... more Wastewater-based epidemiology has become an important tool for the surveillance of SARS-CoV-2 outbreaks. However, the detection of viruses in sewage is challenging and to date there is no standard method available which has been validated for the sensitive detection of SARS-CoV-2. In this paper, we describe a simple concentration method based on polyethylene glycol (PEG) precipitation, followed by RNA extraction and a one-step quantitative reverse transcription PCR (qRT-PCR) for viral detection in wastewater. PEG-based concentration of viruses is a simple procedure which is not limited by the availability of expensive equipment and has reduced risk of disruption to consumable supply chains. The concentration and RNA extraction steps enable 900–1500× concentration of wastewater samples and sufficiently eliminates the majority of organic matter, which could inhibit the subsequent qRT-PCR assay. Due to the high variation in the physico-chemical properties of wastewater samples, we reco...

Research paper thumbnail of Shedding of SARS-CoV-2 in feces and urine and its potential role in person-to-person transmission and the environment-based spread of COVID-19

Science of The Total Environment, 2020

The recent detection of SARS-CoV-2 RNA in feces has led to speculation that it can be transmitted... more The recent detection of SARS-CoV-2 RNA in feces has led to speculation that it can be transmitted via the fecal-oral/ocular route. This review aims to critically evaluate the incidence of gastrointestinal (GI) symptoms, the quantity and infectivity of SARS-CoV-2 in feces and urine, and whether these pose an infection risk in sanitary settings, sewage networks, wastewater treatment plants, and the wider environment (e.g. rivers, lakes and marine waters). A review of 48 independent studies revealed that severe GI dysfunction is only evident in a small number of COVID-19 cases, with 11 ± 2% exhibiting diarrhea and 12 ± 3% exhibiting vomiting and nausea. In addition to these cases, SARS-CoV-2 RNA can be detected in feces from some asymptomatic, mildly- and pre-symptomatic individuals. Fecal shedding of the virus peaks in the symptomatic period and can persist for several weeks, but with declining abundances in the post-symptomatic phase. SARS-CoV-2 RNA is occasionally detected in urine, but reports in fecal samples are more frequent. The abundance of the virus genetic material in both urine (ca. 102–105 gc/ml) and feces (ca. 102–107 gc/ml) is much lower than in nasopharyngeal fluids (ca. 105–1011 gc/ml). There is strong evidence of multiplication of SARS-CoV-2 in the gut and infectious virus has occasionally been recovered from both urine and stool samples. The level and infectious capability of SARS-CoV-2 in vomit remain unknown. In comparison to enteric viruses transmitted via the fecal-oral route (e.g. norovirus, adenovirus), the likelihood of SARS-CoV-2 being transmitted via feces or urine appears much lower due to the lower relative amounts of virus present in feces/urine. The biggest risk of transmission will occur in clinical and care home settings where secondary handling of people and urine/fecal matter occurs. In addition, while SARS-CoV-2 RNA genetic material can be detected by in wastewater, this signal is greatly reduced by conventional treatment. Our analysis also suggests the likelihood of infection due to contact with sewage-contaminated water (e.g. swimming, surfing, angling) or food (e.g. salads, shellfish) is extremely low or negligible based on very low predicted abundances and limited environmental survival of SARS-CoV-2. These conclusions are corroborated by the fact that tens of million cases of COVID-19 have occurred globally, but exposure to feces or wastewater has never been implicated as a transmission vector.

Research paper thumbnail of Fecal Shedding of SARS-CoV-2 and Its Potential Role in Person-To-Person Transmission and the Environment-Based Spread of COVID-19

The recent detection of SARS-CoV-2 RNA in feces has led to speculation that it can be transmitted... more The recent detection of SARS-CoV-2 RNA in feces has led to speculation that it can be transmitted via the fecal-oral/ocular route. This review aims to critically evaluate the incidence of gastrointestinal (GI) symptoms, the quantity and infectivity of SARS-CoV-2 in feces and urine, and whether these pose an infection risk in sanitary settings, sewage networks, wastewater treatment plants, and the wider environment (e.g. rivers, lakes and marine waters). Overall, severe GI dysfunction is only evident in a small number of COVID-19 cases, with 11 ± 2% exhibiting diarrhea and 12 ± 3% exhibiting vomiting and nausea. In addition to these cases, SARS-CoV-2 RNA can be detected in feces from some asymptomatic, mildly- and pre-symptomatic individuals. Fecal shedding of the virus peaks in the symptomatic period and can persist for several weeks, but with declining abundances in the post-symptomatic phase. SARS-CoV-2 RNA is occasionally detected in urine, but reports in fecal samples are more f...

Research paper thumbnail of Wastewater and public health: the potential of wastewater surveillance for monitoring COVID-19

Current Opinion in Environmental Science & Health, 2020

Pathogenic viruses represent one of the greatest threats to human well-being. As evidenced by the... more Pathogenic viruses represent one of the greatest threats to human well-being. As evidenced by the COVID-19 global pandemic, however, halting the spread of highly contagious diseases is notoriously difficult. Successful control strategies therefore have to rely on effective surveillance. Here, we describe how monitoring wastewater from urban areas can be used to detect the arrival and subsequent decline of pathogens, such as SARS-CoV-2. As the amount of virus shed in faeces and urine varies largely from person to person, it is very difficult to quantitatively determine the number of people who are infected in the population. More research on the surveillance of viruses in wastewater using accurate and validated methods, as well as subsequent risk analysis and modelling is paramount in understanding the dynamics of viral outbreaks.

Research paper thumbnail of Life, but not as we know it: exploring RNA viral diversity in soils through viromics

<p&amp... more <p>Viruses play a crucial and underexplored role in soil microbial ecosystems, but soil viral ecology has focused exclusively on DNA viruses. The role of RNA viruses in soil ecosystems has therefore been largely overlooked, despite their significant impact on public health and food security. Here, we report the first ever study to apply viromics to survey soil RNA viral communities from five sites along an altitudinal primary productivity gradient in the UK. We identified over 3,000 viral sequences, of which over half were unclassified, and newly identified viruses were placed in a global context by the phylogenetic comparison of their RNA-dependent RNA polymerase genes. Unlike DNA viral communities, the RNA viromes were heavily dominated by viruses of eukaryotes, including pathogens of plants, fungi, vertebrates and invertebrates. Sampling sites showed minimal similarity in viral community composition, suggesting that we have just scratched the surface of soil RNA viral diversity. Wider sequencing efforts and method development are required to further explore soil RNA viromes and understand their ecological function; however, this study represents an important step towards the characterisation of soil viral communities and interactions with their microbial hosts, which will provide a more holistic view of the biology of economically and ecologically important soils.</p>

Research paper thumbnail of RNA-viromics reveals diverse communities of soil RNA viruses with the potential to affect grassland ecosystems across multiple trophic levels

ISME Communications

The distribution and diversity of RNA viruses in soil ecosystems are largely unknown, despite the... more The distribution and diversity of RNA viruses in soil ecosystems are largely unknown, despite their significant impact on public health, ecosystem functions, and food security. Here, we characterise soil RNA viral communities along an altitudinal productivity gradient of peat, managed grassland and coastal soils. We identified 3462 viral contigs in RNA viromes from purified virus-like-particles in five soil-types and assessed their spatial distribution, phylogenetic diversity and potential host ranges. Soil types exhibited minimal similarity in viral community composition, but with >10-fold more viral contigs shared between managed grassland soils when compared with peat or coastal soils. Phylogenetic analyses predicted soil RNA viral communities are formed from viruses of bacteria, plants, fungi, vertebrates and invertebrates, with only 12% of viral contigs belonging to the bacteria-infecting Leviviricetes class. 11% of viral contigs were found to be most closely related to memb...

Research paper thumbnail of Monitoring SARS-CoV-2 in municipal wastewater to evaluate the success of lockdown measures for controlling COVID-19 in the UK

Water Research, 2021

SARS-CoV-2 and the resulting COVID-19 pandemic represents one of the greatest recent threats to h... more SARS-CoV-2 and the resulting COVID-19 pandemic represents one of the greatest recent threats to human health, wellbeing and economic growth. Wastewater-based epidemiology (WBE) of human viruses can be a useful tool for population-scale monitoring of SARS-CoV-2 prevalence and epidemiology to help prevent further spread of the disease, particularly within urban centres. Here we present a longitudinal analysis (March-July, 2020) of SARS-CoV-2 RNA prevalence in sewage across six major urban centres in the UK (total population equivalent 3 million) by q(RT-)PCR and viral genome sequencing. Our results demonstrate that levels of SARS-CoV-2 RNA generally correlated with the abundance of clinical cases recorded within the community in large urban centres, with a marked decline in SARS-CoV-2 RNA abundance following the implementation of lockdown measures. The strength of this association was weaker in areas with lower confirmed COVID-19 case numbers. Further sequencing analysis of SARS-CoV-2...

Research paper thumbnail of Emerging technologies for the rapid detection of enteric viruses in the aquatic environment

Current Opinion in Environmental Science & Health

Research paper thumbnail of SARS-CoV-2 qPCR and water chemistry data from wastewater at six sites in England and Wales between March and July 2020, with associated Covid-19 positive test and related-death data collated from other sources

Concentrations of SARS-CoV-2 RNA and physichochemical data on wastewater samples collected from s... more Concentrations of SARS-CoV-2 RNA and physichochemical data on wastewater samples collected from six sites across England and Wales between March and July 2020. Also included are the number of COVID-19 positive tests and COVID-19 related deaths for the same period collated from publicly available records. COVID-19 data relate to the lower tier local authority that the wastewater treatment plant was located within.

Research paper thumbnail of Diverse soil RNA viral communities have the potential to influence grassland ecosystems across multiple trophic levels

Grassland ecosystems form 30-40%1 of total land cover and provide essential ecosystem services, i... more Grassland ecosystems form 30-40%1 of total land cover and provide essential ecosystem services, including food production, flood mitigation and carbon storage2. Their productivity is closely related to soil microbial communities3, yet the role of viruses within these critical ecosystems is currently undercharacterised4 and in particular, our knowledge of soil RNA viruses is significantly limited5. Here, we applied viromics6 to characterise soil RNA viral communities along an altitudinal productivity gradient of peat, managed grassland and coastal soils. We identified 3,462 viral operational taxonomic units (vOTUs) and assessed their spatial distribution, phylogenetic diversity and potential host ranges. Soil types exhibited showed minimal similarity in viral community composition, but with >10-fold more vOTUs shared between managed grassland soils when compared with peat or coastal soils. Phylogenetic analyses of viral sequences predicted broad host ranges including bacteria, pla...

Research paper thumbnail of Correction: Farkas et al. Concentration and Quantification of SARS-CoV-2 RNA in Wastewater Using Polyethylene Glycol-Based Concentration and qRT-PCR. Methods Protoc. 2021, 4, 17

Methods and Protocols, 2021

This article is an open access article distributed under the terms and conditions of the Creative... more This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY

Research paper thumbnail of Viral indicators for tracking domestic wastewater contamination in the aquatic environment

Water Research, 2020

Waterborne enteric viruses are an emerging cause of disease outbreaks and represent a major threa... more Waterborne enteric viruses are an emerging cause of disease outbreaks and represent a major threat to global public health. Enteric viruses may originate from human wastewater and can undergo rapid transport through aquatic environments with minimal decay. Surveillance and source apportionment of enteric viruses in environmental waters is therefore essential for accurate risk management. However, individual monitoring of the >100 enteric viral strains that have been identified as aquatic contaminants is unfeasible. Instead, viral indicators are often used for quantitative assessments of wastewater contamination, viral decay and transport in water. An ideal indicator for tracking wastewater contamination should be (i) easy to detect and quantify, (ii) source-specific, (iii) resistant to wastewater treatment processes, and (iv) persistent in the aquatic environment, with similar behaviour to viral pathogens. Here, we conducted a comprehensive review of 127 peer-reviewed publications, to critically evaluate the effectiveness of several viral indicators of wastewater pollution, including common enteric viruses (mastadenoviruses, polyomaviruses, and Aichi viruses), the pepper mild mottle virus (PMMoV), and gut-associated bacteriophages (Type II/III FRNA phages and phages infecting human Bacteroides species, including crAssphage). Our analysis suggests that overall, human mastadenoviruses have the greatest potential to indicate contamination by domestic wastewater due to their easy detection, culturability, and high prevalence in wastewater and in the polluted environment. Aichi virus, crAssphage and PMMoV are also widely detected in wastewater and in the environment, and may be used as molecular markers for human-derived contamination. We conclude that viral indicators are suitable for the long-term monitoring of viral contamination in freshwater and marine environments and that these should be implemented within monitoring programmes to provide a holistic assessment of microbiological water quality and wastewater-based epidemiology, improve current risk management strategies and protect global human health.

Research paper thumbnail of Concentration and Quantification of SARS-CoV-2 RNA in Wastewater Using Polyethylene Glycol-Based Concentration and qRT-PCR

Methods and Protocols, 2021

Wastewater-based epidemiology has become an important tool for the surveillance of SARS-CoV-2 out... more Wastewater-based epidemiology has become an important tool for the surveillance of SARS-CoV-2 outbreaks. However, the detection of viruses in sewage is challenging and to date there is no standard method available which has been validated for the sensitive detection of SARS-CoV-2. In this paper, we describe a simple concentration method based on polyethylene glycol (PEG) precipitation, followed by RNA extraction and a one-step quantitative reverse transcription PCR (qRT-PCR) for viral detection in wastewater. PEG-based concentration of viruses is a simple procedure which is not limited by the availability of expensive equipment and has reduced risk of disruption to consumable supply chains. The concentration and RNA extraction steps enable 900–1500× concentration of wastewater samples and sufficiently eliminates the majority of organic matter, which could inhibit the subsequent qRT-PCR assay. Due to the high variation in the physico-chemical properties of wastewater samples, we reco...

Research paper thumbnail of Shedding of SARS-CoV-2 in feces and urine and its potential role in person-to-person transmission and the environment-based spread of COVID-19

Science of The Total Environment, 2020

The recent detection of SARS-CoV-2 RNA in feces has led to speculation that it can be transmitted... more The recent detection of SARS-CoV-2 RNA in feces has led to speculation that it can be transmitted via the fecal-oral/ocular route. This review aims to critically evaluate the incidence of gastrointestinal (GI) symptoms, the quantity and infectivity of SARS-CoV-2 in feces and urine, and whether these pose an infection risk in sanitary settings, sewage networks, wastewater treatment plants, and the wider environment (e.g. rivers, lakes and marine waters). A review of 48 independent studies revealed that severe GI dysfunction is only evident in a small number of COVID-19 cases, with 11 ± 2% exhibiting diarrhea and 12 ± 3% exhibiting vomiting and nausea. In addition to these cases, SARS-CoV-2 RNA can be detected in feces from some asymptomatic, mildly- and pre-symptomatic individuals. Fecal shedding of the virus peaks in the symptomatic period and can persist for several weeks, but with declining abundances in the post-symptomatic phase. SARS-CoV-2 RNA is occasionally detected in urine, but reports in fecal samples are more frequent. The abundance of the virus genetic material in both urine (ca. 102–105 gc/ml) and feces (ca. 102–107 gc/ml) is much lower than in nasopharyngeal fluids (ca. 105–1011 gc/ml). There is strong evidence of multiplication of SARS-CoV-2 in the gut and infectious virus has occasionally been recovered from both urine and stool samples. The level and infectious capability of SARS-CoV-2 in vomit remain unknown. In comparison to enteric viruses transmitted via the fecal-oral route (e.g. norovirus, adenovirus), the likelihood of SARS-CoV-2 being transmitted via feces or urine appears much lower due to the lower relative amounts of virus present in feces/urine. The biggest risk of transmission will occur in clinical and care home settings where secondary handling of people and urine/fecal matter occurs. In addition, while SARS-CoV-2 RNA genetic material can be detected by in wastewater, this signal is greatly reduced by conventional treatment. Our analysis also suggests the likelihood of infection due to contact with sewage-contaminated water (e.g. swimming, surfing, angling) or food (e.g. salads, shellfish) is extremely low or negligible based on very low predicted abundances and limited environmental survival of SARS-CoV-2. These conclusions are corroborated by the fact that tens of million cases of COVID-19 have occurred globally, but exposure to feces or wastewater has never been implicated as a transmission vector.

Research paper thumbnail of Fecal Shedding of SARS-CoV-2 and Its Potential Role in Person-To-Person Transmission and the Environment-Based Spread of COVID-19

The recent detection of SARS-CoV-2 RNA in feces has led to speculation that it can be transmitted... more The recent detection of SARS-CoV-2 RNA in feces has led to speculation that it can be transmitted via the fecal-oral/ocular route. This review aims to critically evaluate the incidence of gastrointestinal (GI) symptoms, the quantity and infectivity of SARS-CoV-2 in feces and urine, and whether these pose an infection risk in sanitary settings, sewage networks, wastewater treatment plants, and the wider environment (e.g. rivers, lakes and marine waters). Overall, severe GI dysfunction is only evident in a small number of COVID-19 cases, with 11 ± 2% exhibiting diarrhea and 12 ± 3% exhibiting vomiting and nausea. In addition to these cases, SARS-CoV-2 RNA can be detected in feces from some asymptomatic, mildly- and pre-symptomatic individuals. Fecal shedding of the virus peaks in the symptomatic period and can persist for several weeks, but with declining abundances in the post-symptomatic phase. SARS-CoV-2 RNA is occasionally detected in urine, but reports in fecal samples are more f...

Research paper thumbnail of Wastewater and public health: the potential of wastewater surveillance for monitoring COVID-19

Current Opinion in Environmental Science & Health, 2020

Pathogenic viruses represent one of the greatest threats to human well-being. As evidenced by the... more Pathogenic viruses represent one of the greatest threats to human well-being. As evidenced by the COVID-19 global pandemic, however, halting the spread of highly contagious diseases is notoriously difficult. Successful control strategies therefore have to rely on effective surveillance. Here, we describe how monitoring wastewater from urban areas can be used to detect the arrival and subsequent decline of pathogens, such as SARS-CoV-2. As the amount of virus shed in faeces and urine varies largely from person to person, it is very difficult to quantitatively determine the number of people who are infected in the population. More research on the surveillance of viruses in wastewater using accurate and validated methods, as well as subsequent risk analysis and modelling is paramount in understanding the dynamics of viral outbreaks.

Research paper thumbnail of Life, but not as we know it: exploring RNA viral diversity in soils through viromics

<p&amp... more <p>Viruses play a crucial and underexplored role in soil microbial ecosystems, but soil viral ecology has focused exclusively on DNA viruses. The role of RNA viruses in soil ecosystems has therefore been largely overlooked, despite their significant impact on public health and food security. Here, we report the first ever study to apply viromics to survey soil RNA viral communities from five sites along an altitudinal primary productivity gradient in the UK. We identified over 3,000 viral sequences, of which over half were unclassified, and newly identified viruses were placed in a global context by the phylogenetic comparison of their RNA-dependent RNA polymerase genes. Unlike DNA viral communities, the RNA viromes were heavily dominated by viruses of eukaryotes, including pathogens of plants, fungi, vertebrates and invertebrates. Sampling sites showed minimal similarity in viral community composition, suggesting that we have just scratched the surface of soil RNA viral diversity. Wider sequencing efforts and method development are required to further explore soil RNA viromes and understand their ecological function; however, this study represents an important step towards the characterisation of soil viral communities and interactions with their microbial hosts, which will provide a more holistic view of the biology of economically and ecologically important soils.</p>

Research paper thumbnail of RNA-viromics reveals diverse communities of soil RNA viruses with the potential to affect grassland ecosystems across multiple trophic levels

ISME Communications

The distribution and diversity of RNA viruses in soil ecosystems are largely unknown, despite the... more The distribution and diversity of RNA viruses in soil ecosystems are largely unknown, despite their significant impact on public health, ecosystem functions, and food security. Here, we characterise soil RNA viral communities along an altitudinal productivity gradient of peat, managed grassland and coastal soils. We identified 3462 viral contigs in RNA viromes from purified virus-like-particles in five soil-types and assessed their spatial distribution, phylogenetic diversity and potential host ranges. Soil types exhibited minimal similarity in viral community composition, but with >10-fold more viral contigs shared between managed grassland soils when compared with peat or coastal soils. Phylogenetic analyses predicted soil RNA viral communities are formed from viruses of bacteria, plants, fungi, vertebrates and invertebrates, with only 12% of viral contigs belonging to the bacteria-infecting Leviviricetes class. 11% of viral contigs were found to be most closely related to memb...

Research paper thumbnail of Monitoring SARS-CoV-2 in municipal wastewater to evaluate the success of lockdown measures for controlling COVID-19 in the UK

Water Research, 2021

SARS-CoV-2 and the resulting COVID-19 pandemic represents one of the greatest recent threats to h... more SARS-CoV-2 and the resulting COVID-19 pandemic represents one of the greatest recent threats to human health, wellbeing and economic growth. Wastewater-based epidemiology (WBE) of human viruses can be a useful tool for population-scale monitoring of SARS-CoV-2 prevalence and epidemiology to help prevent further spread of the disease, particularly within urban centres. Here we present a longitudinal analysis (March-July, 2020) of SARS-CoV-2 RNA prevalence in sewage across six major urban centres in the UK (total population equivalent 3 million) by q(RT-)PCR and viral genome sequencing. Our results demonstrate that levels of SARS-CoV-2 RNA generally correlated with the abundance of clinical cases recorded within the community in large urban centres, with a marked decline in SARS-CoV-2 RNA abundance following the implementation of lockdown measures. The strength of this association was weaker in areas with lower confirmed COVID-19 case numbers. Further sequencing analysis of SARS-CoV-2...

Research paper thumbnail of Emerging technologies for the rapid detection of enteric viruses in the aquatic environment

Current Opinion in Environmental Science & Health