Ibrahem Afifi | Banha University At Egypt (original) (raw)

Papers by Ibrahem Afifi

Research paper thumbnail of Content-based Medical Image Retrieval based on Deep Features Expansion

This paper presents a new class of local neighborhood based wavelet feature descriptor (LNWFD) fo... more This paper presents a new class of local neighborhood based wavelet feature descriptor (LNWFD) for content based medical image retrieval (CBMIR). To retrieve images effectively from large medical databases is backbone of diagnosis. Existing wavelet transform based medical image retrieval methods suffer from high length feature vector with confined retrieval performance. Triplet half-band filter bank (THFB) enhanced the properties of wavelet filters using three kernels. The influence of THFB has employed in the proposed method. First, triplet half-band filter bank (THFB) is used for single level wavelet decomposition to obtain four sub-bands. Next, the relationship among wavelet coefficients is exploited at each sub-band using 3 × 3 neighborhood window to form LNWFD pattern. The novelty of the proposed descriptor lies in exploring relation between wavelet transform values of pixels rather than intensity values which gives more detail local information in wavelet sub-bands. Thus, proposed feature descriptor is robust against illumination. Manhattan distance is used to compute similarity between query feature vector and feature vector of database. The proposed method is tested for medical image retrieval using OASIS-MRI, NEMA-CT, and Emphysema-CT databases. The average retrieval precisions achieved are 71.45%, 99.51% of OASIS-MRI and NEMA-CT databases for top ten matches considered respectively and 55.51% of Emphysema-CT database for top 50 matches. The superiority in terms of performance of the proposed method is confirmed by the experimental results over the well-known existing descriptors.

Research paper thumbnail of RbQE: An Efficient Method for Content-Based Medical Image Retrieval Based on Query Expansion

Journal of Digital Imaging, Jan 26, 2023

Systems for retrieving and managing content-based medical images are becoming more important, esp... more Systems for retrieving and managing content-based medical images are becoming more important, especially as medical imaging technology advances and the medical image database grows. In addition, these systems can also use medical images to better grasp and gain a deeper understanding of the causes and treatments of different diseases, not just for diagnostic purposes. For achieving all these purposes, there is a critical need for an efficient and accurate content-based medical image retrieval (CBMIR) method. This paper proposes an efficient method (RbQE) for the retrieval of computed tomography (CT) and magnetic resonance (MR) images. RbQE is based on expanding the features of querying and exploiting the pre-trained learning models AlexNet and VGG-19 to extract compact, deep, and high-level features from medical images. There are two searching procedures in RbQE: a rapid search and a final search. In the rapid search, the original query is expanded by retrieving the top-ranked images from each class and is used to reformulate the query by calculating the mean values for deep features of the top-ranked images, resulting in a new query for each class. In the final search, the new query that is most similar to the original query will be used for retrieval from the database. The performance of the proposed method has been compared to state-of-the-art methods on four publicly available standard databases, namely, TCIA-CT, EXACT09-CT, NEMA-CT, and OASIS-MRI. Experimental results show that the proposed method exceeds the compared methods by 0.84%, 4.86%, 1.24%, and 14.34% in average retrieval precision (ARP) for the TCIA-CT, EXACT09-CT, NEMA-CT, and OASIS-MRI databases, respectively.

Research paper thumbnail of Content Based medical Image Retrieval based on BEMD: Optimization of a similarity metric

2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010

This paper presents a new class of local neighborhood based wavelet feature descriptor (LNWFD) fo... more This paper presents a new class of local neighborhood based wavelet feature descriptor (LNWFD) for content based medical image retrieval (CBMIR). To retrieve images effectively from large medical databases is backbone of diagnosis. Existing wavelet transform based medical image retrieval methods suffer from high length feature vector with confined retrieval performance. Triplet half-band filter bank (THFB) enhanced the properties of wavelet filters using three kernels. The influence of THFB has employed in the proposed method. First, triplet half-band filter bank (THFB) is used for single level wavelet decomposition to obtain four sub-bands. Next, the relationship among wavelet coefficients is exploited at each sub-band using 3 × 3 neighborhood window to form LNWFD pattern. The novelty of the proposed descriptor lies in exploring relation between wavelet transform values of pixels rather than intensity values which gives more detail local information in wavelet sub-bands. Thus, proposed feature descriptor is robust against illumination. Manhattan distance is used to compute similarity between query feature vector and feature vector of database. The proposed method is tested for medical image retrieval using OASIS-MRI, NEMA-CT, and Emphysema-CT databases. The average retrieval precisions achieved are 71.45%, 99.51% of OASIS-MRI and NEMA-CT databases for top ten matches considered respectively and 55.51% of Emphysema-CT database for top 50 matches. The superiority in terms of performance of the proposed method is confirmed by the experimental results over the well-known existing descriptors.

Research paper thumbnail of Effective of Modern Techniques on Content-Based Medical Image Retrieval: A Survey

International Journal of Computer Science and Mobile Computing, 2022

The advancement in medical imaging has resulted in a rapid and large increase in medical images i... more The advancement in medical imaging has resulted in a rapid and large increase in medical images inside repositories. These medical images contain very important information that can be used in many things, including diagnosing diseases. This implies that a precise, efficient way of indexing and retrieving biomedical images is necessary to obtain medical images from such repositories in real-time. CBMIR, therefore, played an important part, where the CBMIR’s area is very important in the field of image processing and involves low-level feature extraction and similarity measures for the comparison of medical images such as color histograms, edges, texture, shape. The majority of the methods already in use in CBMIR enhance the retrieval of a medical image and diseases diagnosis by reducing the issue of the semantic gap between low visual and high semantic levels. Also, secure access to the medical image of diverse cases, which are often kept on a network and are susceptible to maliciou...

Research paper thumbnail of Content-based Medical Image Retrieval based on Deep Features Expansion

This paper presents a new class of local neighborhood based wavelet feature descriptor (LNWFD) fo... more This paper presents a new class of local neighborhood based wavelet feature descriptor (LNWFD) for content based medical image retrieval (CBMIR). To retrieve images effectively from large medical databases is backbone of diagnosis. Existing wavelet transform based medical image retrieval methods suffer from high length feature vector with confined retrieval performance. Triplet half-band filter bank (THFB) enhanced the properties of wavelet filters using three kernels. The influence of THFB has employed in the proposed method. First, triplet half-band filter bank (THFB) is used for single level wavelet decomposition to obtain four sub-bands. Next, the relationship among wavelet coefficients is exploited at each sub-band using 3 × 3 neighborhood window to form LNWFD pattern. The novelty of the proposed descriptor lies in exploring relation between wavelet transform values of pixels rather than intensity values which gives more detail local information in wavelet sub-bands. Thus, proposed feature descriptor is robust against illumination. Manhattan distance is used to compute similarity between query feature vector and feature vector of database. The proposed method is tested for medical image retrieval using OASIS-MRI, NEMA-CT, and Emphysema-CT databases. The average retrieval precisions achieved are 71.45%, 99.51% of OASIS-MRI and NEMA-CT databases for top ten matches considered respectively and 55.51% of Emphysema-CT database for top 50 matches. The superiority in terms of performance of the proposed method is confirmed by the experimental results over the well-known existing descriptors.

Research paper thumbnail of RbQE: An Efficient Method for Content-Based Medical Image Retrieval Based on Query Expansion

Journal of Digital Imaging, Jan 26, 2023

Systems for retrieving and managing content-based medical images are becoming more important, esp... more Systems for retrieving and managing content-based medical images are becoming more important, especially as medical imaging technology advances and the medical image database grows. In addition, these systems can also use medical images to better grasp and gain a deeper understanding of the causes and treatments of different diseases, not just for diagnostic purposes. For achieving all these purposes, there is a critical need for an efficient and accurate content-based medical image retrieval (CBMIR) method. This paper proposes an efficient method (RbQE) for the retrieval of computed tomography (CT) and magnetic resonance (MR) images. RbQE is based on expanding the features of querying and exploiting the pre-trained learning models AlexNet and VGG-19 to extract compact, deep, and high-level features from medical images. There are two searching procedures in RbQE: a rapid search and a final search. In the rapid search, the original query is expanded by retrieving the top-ranked images from each class and is used to reformulate the query by calculating the mean values for deep features of the top-ranked images, resulting in a new query for each class. In the final search, the new query that is most similar to the original query will be used for retrieval from the database. The performance of the proposed method has been compared to state-of-the-art methods on four publicly available standard databases, namely, TCIA-CT, EXACT09-CT, NEMA-CT, and OASIS-MRI. Experimental results show that the proposed method exceeds the compared methods by 0.84%, 4.86%, 1.24%, and 14.34% in average retrieval precision (ARP) for the TCIA-CT, EXACT09-CT, NEMA-CT, and OASIS-MRI databases, respectively.

Research paper thumbnail of Content Based medical Image Retrieval based on BEMD: Optimization of a similarity metric

2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010

This paper presents a new class of local neighborhood based wavelet feature descriptor (LNWFD) fo... more This paper presents a new class of local neighborhood based wavelet feature descriptor (LNWFD) for content based medical image retrieval (CBMIR). To retrieve images effectively from large medical databases is backbone of diagnosis. Existing wavelet transform based medical image retrieval methods suffer from high length feature vector with confined retrieval performance. Triplet half-band filter bank (THFB) enhanced the properties of wavelet filters using three kernels. The influence of THFB has employed in the proposed method. First, triplet half-band filter bank (THFB) is used for single level wavelet decomposition to obtain four sub-bands. Next, the relationship among wavelet coefficients is exploited at each sub-band using 3 × 3 neighborhood window to form LNWFD pattern. The novelty of the proposed descriptor lies in exploring relation between wavelet transform values of pixels rather than intensity values which gives more detail local information in wavelet sub-bands. Thus, proposed feature descriptor is robust against illumination. Manhattan distance is used to compute similarity between query feature vector and feature vector of database. The proposed method is tested for medical image retrieval using OASIS-MRI, NEMA-CT, and Emphysema-CT databases. The average retrieval precisions achieved are 71.45%, 99.51% of OASIS-MRI and NEMA-CT databases for top ten matches considered respectively and 55.51% of Emphysema-CT database for top 50 matches. The superiority in terms of performance of the proposed method is confirmed by the experimental results over the well-known existing descriptors.

Research paper thumbnail of Effective of Modern Techniques on Content-Based Medical Image Retrieval: A Survey

International Journal of Computer Science and Mobile Computing, 2022

The advancement in medical imaging has resulted in a rapid and large increase in medical images i... more The advancement in medical imaging has resulted in a rapid and large increase in medical images inside repositories. These medical images contain very important information that can be used in many things, including diagnosing diseases. This implies that a precise, efficient way of indexing and retrieving biomedical images is necessary to obtain medical images from such repositories in real-time. CBMIR, therefore, played an important part, where the CBMIR’s area is very important in the field of image processing and involves low-level feature extraction and similarity measures for the comparison of medical images such as color histograms, edges, texture, shape. The majority of the methods already in use in CBMIR enhance the retrieval of a medical image and diseases diagnosis by reducing the issue of the semantic gap between low visual and high semantic levels. Also, secure access to the medical image of diverse cases, which are often kept on a network and are susceptible to maliciou...