Pandas DataFrame plot() Method – Be on the Right Side of Change (original) (raw)


Preparation

Before any data manipulation can occur, three (3) new libraries will require installation.

To install these libraries, navigate to an IDE terminal. At the command prompt ($), execute the code below. For the terminal used in this example, the command prompt is a dollar sign ($). Your terminal prompt may be different.

$ pip install pandas

Hit the <Enter> key on the keyboard to start the installation process.

$ pip install matplotlib

Hit the <Enter> key on the keyboard to start the installation process.

$ pip install scipy

Hit the <Enter> key on the keyboard to start the installation process.

If the installations were successful, a message displays in the terminal indicating the same.


Feel free to view the PyCharm installation guide for the required libraries.


Add the following code to the top of each code snippet. This snippet will allow the code in this article to run error-free.

import pandas as pd import matplotlib.pyplot as plt import scipy


The plot() method creates visual graphs based on a dataset of a DataFrame or Series.

The syntax for this method is as follows:

DataFrame.plot(*args, **kwargs)

Parameter Description
data This parameter is a DataFrame/Series dataset.
x This parameter is a label/position (for a DataFrame only).
kind This parameter is a string and indicates the type of plot to create:'line': default is this option'density': same as ‘KDE’‘bar’: vertical bar chart'area': area plot‘barh’: horizontal bar chart'pie': pie plot‘hist’: histogram'scatter': scatter plot (DataFrame)‘box’: boxplot'hexbin': hexbin plot (DataFrame)‘kde’: Kernel Density plot
ax This parameter is the Matplotlib axis object.
subplots This parameter makes subplots for each column separately.
sharex If subplots, share x-axis and set some x-axis labels to invisible.
sharey If subplots, share the y-axis and set some y-axis labels to invisible.
layout A tuple that determines the row/column layout for subplots.
figsize This parameter sets the size (width and height) of the figure.
use_index Use the index as ticks for the x-axis.
title The heading to use for the plot (graph).
grid These are the axis grid lines.
legend Display legend on the axis subplots. Displays by default (True).
style The line style per column (matplotlib).
logx Use log/symlog scaling on the x-axis.
logy Use log/symlog scaling on the y-axis.
loglog Use log/symlog scaling on both the x-axis and y-axis.
xticks The value to use for xticks.
yticks The value to use for yticks.
xlim Set the x limits of the current axis.
ylim Set the y limits of the current axis.
xlabel Name for the x-axis.
ylabel Name for the y-axis.
rot The rotation for ticks (xticks vertical/yticks horizontal).
fontsize The size of the font to use for both xticks/yticks.
colormap This parameter is the color map to select specific colors.
position These are the alignments for the bar plot.
table If True, create a table using DataFrame data. This data will transpose to the matplotlib default layout.
yerr See plotting with Error Bars.
xerr See plotting with Error Bars.
stacked If set to True, create a stacked plot.
sort_columns This parameter sorts the column name(s) for plot ordering.
secondary_y This parameter determines if it plots on the secondary y-axis.
mark_right If set determines if using a secondary_y axis auto marks the column labels with right in the legend.
include_bool If set to True, Boolean values will be available to plot.
backend This parameter determines the backend to use instead of the option plotting.backend.
**kwargs This parameter is the option(s) passed to the matplotlib library.

This example reads in the countries.csv file and plots the Country, Population, and Area columns on a Line chart.

💡 Note: Click here to download this file. Move it to the current working directory,

df = pd.read_csv('countries.csv') ax = plt.gca()

df.plot(kind='line', x='Country', y='Population', title='Sample Countries', fontsize=8, ax=ax) df.plot(kind='line',x='Country', y='Area', ax=ax) plt.savefig('plot_line.png') plt.show()

💡 Note: The gca() method gets the current axes for the figure matching **kwargs, or creates a new one.

Output – On-Screen

The buttons on the bottom left can be used to further manipulate the chart.

💡 Note: Another way to create this chart is to use the plot.line() method.

More Pandas DataFrame Methods

Feel free to learn more about the previous and next pandas DataFrame methods (alphabetically) here:

Also, check out the full cheat sheet overview of all Pandas DataFrame methods.