终极算法已在多大程度上影响我们的生活? (original) (raw)

作为一位机器学习领域研习10 年以上的专业技术人员,我当初入行的时候没有想到,短短的10 年间,这项技术会如此快速地改变众多行业,并影响全球数十亿用户生活的方方面面。在今天,当你用今日头条浏览新闻资讯的时候,当你用网易云音乐查看推荐歌单的时候,当你在百度搜索信息的时候,当你在互联网金融平台申请借款的时候,甚至在你调戏Siri 和小冰的时候,其实都是其背后的机器学习算法在云端服务器中为你默默服务。但对于这样一种重要技术,市面上一直缺少一本适合普通读者的入门科普读物,而众多的专业书籍要求读者具备一定的高等数学和计算机基础算法知识,并不适合科普的需要。直到朋友将《终极算法:机器学习和人工智能如何重塑世界》推荐给我时,我欣慰地发现,这正是想了解一点机器学习的读者所需要的。
多明戈斯是华盛顿大学的终身教授,也是一位在机器学习领域具有20 年研究经历的资深科学家,一直致力于融合各种机器学习算法的优势,提出一种可以解决所有应用问题的通用算法,即终极算法。在这本书里,作者详细地阐述了他的思路。其实我个人在阅读本书的过程中,始终对“终极算法”的提法充满怀疑。在我看来,机器学习作为人工智能领域的主流技术,在现实社会中一直以技术工具的面目为人所知。不同的技术流派和相应算法往往可以很好地解决一些问题,却对另一些问题一筹莫展。所谓的终极算法真的存在吗?如果存在,有价值吗?
可以拿内燃机举个例子,就我这个外行来说,也知道存在活塞式发动机、涡喷发动机、涡轴发动机、涡扇发动机、涡桨发动机、冲压发动机等不同种类的内燃机。不同的内燃机特性迥异,适用的工况也不尽相同。小到家用小汽车,大到导弹驱逐舰,人类制造的各种机动设备,都可以根据自己的效率需求、动力需求、寿命需求,乃至启动速度等多种需求维度选择发动机种类。如果有人非要搞个终极内燃机,并企图用这种内燃机替代现存的各类内燃机,为所有大大小小、需求不同的机动设备提供统一动力,估计大概率是要失败的。这种通用的终极内燃机如果能搞出来,在大部分领域肯定竞争不过各领域的专用内燃机,或者成本太高,或者能效太低。
后来我发现,很多普通人可能没有意识到自己的生活中机器学习算法的影响已经无处不在,机器学习已经在逐渐接管现实世界。大众对这样一种技术的认知程度和该技术的重要性相比显得远远不够,在不远的未来,了解机器学习并有能力利用机器学习改进自己工作的人在职业发展上会具备巨大的优势。“不要和人工智能对抗,要让人工智能为你服务”是作者诚挚的忠告。而要利用好机器学习这个工具,并不一定需要读一个计算机博士学位,但有必要了解一些基本的概念,了解各种技术的优缺点和能力边界。正如一位称职的驾驶员不必了解具体怎么制造汽车发动机,但是对发动机的工作原理和种类还是需要略知一二的。因此,相比一板一眼地介绍机器学习的典型算法,多明戈斯设计了一个更引人入胜的套路:先抛出一个“是否存在一种终极算法”的问题,然后带着大家回顾机器学习发展史上的重要流派和代表算法。每回顾一派,就鼓励大家思考终极算法应该如何借鉴这类算法的优点。好奇的普通读者带着疑问读完本书后,不论其是否相信终极算法的存在,至少对各类算法都会有一定的印象。以讨论终极算法为名,行科普之实,到这一步,我觉得多明戈斯的目的已经达到一半了。
另外,无论终极算法是否存在,多明戈斯希望这个大胆的问题能够激发部分读者的好奇,甚至被这个问题吸引成为机器学习的专业研究人员。确实,每一种学科都需要至高的理想驱动向前,就如同物理的大一统理论,当无数杰出的天才为一个终极问题孜孜以求时,就算这个问题本身在这些人的有生之年可能没有答案,但是这个学科一定会因为这些伟大的探索历程取得辉煌的进步。我想,这也许是因为多明戈斯对机器学习的热爱夹带的另一个私货吧。

有关键情节透露