A. Viczian | Biological Research Centre of Hungarian Academy of Sciences (original) (raw)

Papers by A. Viczian

Research paper thumbnail of Constitutive Photomorphogenesis 1 and Multiple Photoreceptors Control Degradation of Phytochrome Interacting Factor 3, a Transcription Factor Required for Light Signaling in Arabidopsis

THE PLANT CELL ONLINE, 2004

Light, in a quality-and quantity-dependent fashion, induces nuclear import of the plant photorece... more Light, in a quality-and quantity-dependent fashion, induces nuclear import of the plant photoreceptors phytochrome, promotes interaction of phytochrome A (phyA) and phyB with transcription factors including phytochrome interacting factor 3 (PIF3), and is thought to trigger a transcriptional cascade to regulate the expression of ;2500 genes in Arabidopsis thaliana. Here, we show that controlled degradation of the transcription factor PIF3 is a major regulatory step in light signaling. We demonstrate that accumulation of PIF3 in the nucleus in dark requires constitutive photomorphogenesis 1 (COP1), a negative regulator of photomorphogenesis, and show that red (R) and far-red light (FR) induce rapid degradation of the PIF3 protein. This process is controlled by the concerted action of the R/FR absorbing phyA, phyB, and phyD photoreceptors, and it is not affected by COP1. Rapid light-induced degradation of PIF3 indicates that interaction of PIF3 with these phytochrome species is transient. In addition, we provide evidence that the poc1 mutant, a postulated PIF3 overexpressor that displays hypersensitivity to R but not to FR, lacks detectable amounts of the PIF3 protein. Thus, we propose that PIF3 acts transiently, and its major function is to mediate phytochrome-induced signaling during the developmental switch from skotomorphogenesis to photomorphogenesis and/or dark to light transitions.

Research paper thumbnail of The Serine-Rich N-Terminal Domain of Oat Phytochrome A Helps Regulate Light Responses and Subnuclear Localization of the Photoreceptor

PLANT PHYSIOLOGY, 2002

Phytochrome (phy) A mediates two distinct photobiological responses in plants: the very-low-fluen... more Phytochrome (phy) A mediates two distinct photobiological responses in plants: the very-low-fluence response (VLFR), which can be saturated by short pulses of very-low-fluence light, and the high-irradiance response (HIR), which requires prolonged irradiation with higher fluences of far-red light (FR). To investigate whether the VLFR and HIR involve different domains within the phyA molecule, transgenic tobacco (Nicotiana tabacum cv Xanthi) and Arabidopsis seedlings expressing full-length (FL) and various deletion mutants of oat (Avena sativa) phyA were examined for their light sensitivity. Although most mutants were either partially active or inactive, a strong differential effect was observed for the ⌬6-12 phyA mutant missing the serine-rich domain between amino acids 6 and 12. ⌬6-12 phyA was as active as FL phyA for the VLFR of hypocotyl growth and cotyledon unfolding in Arabidopsis, and was hyperactive in the VLFR of hypocotyl growth and cotyledon unfolding in tobacco, and the VLFR blocking subsequent greening under white light in Arabidopsis. In contrast, ⌬6-12 phyA showed a dominant-negative suppression of HIR in both species. In hypocotyl cells of Arabidopsis irradiated with FR phyA:green fluorescent protein (GFP) and ⌬6-12 phyA:GFP fusions localized to the nucleus and coalesced into foci. The proportion of nuclei with abundant foci was enhanced by continuous compared with hourly FR provided at equal total fluence in FL phyA:GFP, and by ⌬6-12 phyA mutation under hourly FR. We propose that the N-terminal serine-rich domain of phyA is involved in channeling downstream signaling via the VLFR or HIR pathways in different cellular contexts. fax 5411-45148730.

Research paper thumbnail of Functional Characterization of Phytochrome Interacting Factor 3 for the Arabidopsis thaliana Circadian Clockwork

Plant and Cell Physiology, 2005

Light, in a quality-and quantity-dependent fashion, induces nuclear import of the plant photorece... more Light, in a quality-and quantity-dependent fashion, induces nuclear import of the plant photoreceptors phytochromes and promotes interaction of these receptors with transcription factors including PHYTOCHROME INTER-ACTING FACTOR 3 (PIF3). PIF3 was shown to form in vitro a ternary complex with the G-box element of the promoters of LATE ELONGATED HYPOCOTYL (LHY) and CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and the Pfr conformer of phytochromes. CCA1 and LHY together with TIMING OF CAB EXPRESSION 1 (TOC1) constitute a transcriptional feed-back loop that is essential for a functional circadian clock in Arabidopsis. These findings led to the hypothesis that the PIF3-containing ternary complex regulates transcription of light-responsive genes and is involved in phototransduction to the central circadian clockwork. Here we report that (i) overexpression or lack of biologically functional PIF3 does not affect period length of rhythmic gene expression or red-light-induced resetting of the circadian clock and (ii) the transcription of PIF3 displays a low-amplitude circadian rhythm. We demonstrated previously that irradiation of etiolated seedlings induces rapid, phytochrome-controlled degradation of PIF3. Here we show that nuclear-localized PIF3 accumulates to relatively high levels by the end of the light phase in seedlings grown under diurnal conditions. Taken together, we show that (i) PIF3 does not play a significant role in controlling light input to and function of the circadian clockwork and (ii) a yet unknown mechanism limits phytochrome-induced degradation of PIF3 at the end of the day under diurnal conditions.

Research paper thumbnail of Constitutive Photomorphogenesis 1 and Multiple Photoreceptors Control Degradation of Phytochrome Interacting Factor 3, a Transcription Factor Required for Light Signaling in Arabidopsis

THE PLANT CELL ONLINE, 2004

Light, in a quality-and quantity-dependent fashion, induces nuclear import of the plant photorece... more Light, in a quality-and quantity-dependent fashion, induces nuclear import of the plant photoreceptors phytochrome, promotes interaction of phytochrome A (phyA) and phyB with transcription factors including phytochrome interacting factor 3 (PIF3), and is thought to trigger a transcriptional cascade to regulate the expression of ;2500 genes in Arabidopsis thaliana. Here, we show that controlled degradation of the transcription factor PIF3 is a major regulatory step in light signaling. We demonstrate that accumulation of PIF3 in the nucleus in dark requires constitutive photomorphogenesis 1 (COP1), a negative regulator of photomorphogenesis, and show that red (R) and far-red light (FR) induce rapid degradation of the PIF3 protein. This process is controlled by the concerted action of the R/FR absorbing phyA, phyB, and phyD photoreceptors, and it is not affected by COP1. Rapid light-induced degradation of PIF3 indicates that interaction of PIF3 with these phytochrome species is transient. In addition, we provide evidence that the poc1 mutant, a postulated PIF3 overexpressor that displays hypersensitivity to R but not to FR, lacks detectable amounts of the PIF3 protein. Thus, we propose that PIF3 acts transiently, and its major function is to mediate phytochrome-induced signaling during the developmental switch from skotomorphogenesis to photomorphogenesis and/or dark to light transitions.

Research paper thumbnail of The Serine-Rich N-Terminal Domain of Oat Phytochrome A Helps Regulate Light Responses and Subnuclear Localization of the Photoreceptor

PLANT PHYSIOLOGY, 2002

Phytochrome (phy) A mediates two distinct photobiological responses in plants: the very-low-fluen... more Phytochrome (phy) A mediates two distinct photobiological responses in plants: the very-low-fluence response (VLFR), which can be saturated by short pulses of very-low-fluence light, and the high-irradiance response (HIR), which requires prolonged irradiation with higher fluences of far-red light (FR). To investigate whether the VLFR and HIR involve different domains within the phyA molecule, transgenic tobacco (Nicotiana tabacum cv Xanthi) and Arabidopsis seedlings expressing full-length (FL) and various deletion mutants of oat (Avena sativa) phyA were examined for their light sensitivity. Although most mutants were either partially active or inactive, a strong differential effect was observed for the ⌬6-12 phyA mutant missing the serine-rich domain between amino acids 6 and 12. ⌬6-12 phyA was as active as FL phyA for the VLFR of hypocotyl growth and cotyledon unfolding in Arabidopsis, and was hyperactive in the VLFR of hypocotyl growth and cotyledon unfolding in tobacco, and the VLFR blocking subsequent greening under white light in Arabidopsis. In contrast, ⌬6-12 phyA showed a dominant-negative suppression of HIR in both species. In hypocotyl cells of Arabidopsis irradiated with FR phyA:green fluorescent protein (GFP) and ⌬6-12 phyA:GFP fusions localized to the nucleus and coalesced into foci. The proportion of nuclei with abundant foci was enhanced by continuous compared with hourly FR provided at equal total fluence in FL phyA:GFP, and by ⌬6-12 phyA mutation under hourly FR. We propose that the N-terminal serine-rich domain of phyA is involved in channeling downstream signaling via the VLFR or HIR pathways in different cellular contexts. fax 5411-45148730.

Research paper thumbnail of Functional Characterization of Phytochrome Interacting Factor 3 for the Arabidopsis thaliana Circadian Clockwork

Plant and Cell Physiology, 2005

Light, in a quality-and quantity-dependent fashion, induces nuclear import of the plant photorece... more Light, in a quality-and quantity-dependent fashion, induces nuclear import of the plant photoreceptors phytochromes and promotes interaction of these receptors with transcription factors including PHYTOCHROME INTER-ACTING FACTOR 3 (PIF3). PIF3 was shown to form in vitro a ternary complex with the G-box element of the promoters of LATE ELONGATED HYPOCOTYL (LHY) and CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and the Pfr conformer of phytochromes. CCA1 and LHY together with TIMING OF CAB EXPRESSION 1 (TOC1) constitute a transcriptional feed-back loop that is essential for a functional circadian clock in Arabidopsis. These findings led to the hypothesis that the PIF3-containing ternary complex regulates transcription of light-responsive genes and is involved in phototransduction to the central circadian clockwork. Here we report that (i) overexpression or lack of biologically functional PIF3 does not affect period length of rhythmic gene expression or red-light-induced resetting of the circadian clock and (ii) the transcription of PIF3 displays a low-amplitude circadian rhythm. We demonstrated previously that irradiation of etiolated seedlings induces rapid, phytochrome-controlled degradation of PIF3. Here we show that nuclear-localized PIF3 accumulates to relatively high levels by the end of the light phase in seedlings grown under diurnal conditions. Taken together, we show that (i) PIF3 does not play a significant role in controlling light input to and function of the circadian clockwork and (ii) a yet unknown mechanism limits phytochrome-induced degradation of PIF3 at the end of the day under diurnal conditions.