Dylan Bergen | University of Bristol (original) (raw)
Papers by Dylan Bergen
The Golgi is essential for glycosylation of newly synthesised proteins including almost all cell-... more The Golgi is essential for glycosylation of newly synthesised proteins including almost all cell-surface and extracellular matrix proteoglycans. Giantin, encoded by the golgb1 gene, is a member of the golgin family of proteins that reside within the Golgi stack, but its function remains elusive. Loss of function of giantin in rats causes osteochondrodysplasia; knockout mice show milder defects, notably a cleft palate. In vitro, giantin has been implicated in Golgi organisation, biosynthetic trafficking, and ciliogenesis. Here we show that loss of function of giantin in zebrafish, using either morpholino or knockout techniques, causes defects in cilia function. Giantin morphants have fewer cilia in the neural tube and those remaining are longer. Mutants have the same number of cilia in the neural tube but these cilia are also elongated. Scanning electron microscopy shows that loss of giantin results in an accumulation of material at the ciliary tip, consistent with a loss of function of retrograde intraflagellar transport. Mutants show milder defects than morphants consistent with adaptation to loss of giantin.
Obesity (Silver Spring, Md.), 2012
Obesity is caused by an imbalance between energy intake and expenditure and has become a major he... more Obesity is caused by an imbalance between energy intake and expenditure and has become a major health-care problem in western society. The central melanocortin system plays a crucial role in the regulation of feeding and energy expenditure, and functional loss of melanocortin receptor 4 (MC4R) is the most common genetic cause of human obesity. In this study, we present the first functional Mc4r knockout model in the rat, resulting from an N-ethyl-N-nitrosourea mutagenesis-induced point mutation. In vitro observations revealed impaired membrane-binding and subsequent nonfunctionality of the receptor, whereas in vivo observations showed that functional loss of MC4R increased body weight, food intake, white adipose mass, and changed substrate preference. In addition, intracerebroventricular (ICV) administration of Agouti-Related Protein(79-129) (AgRP(79-129)), an MC4R inverse agonist, or Melanotan-II (MTII), an MC4R agonist, did affect feeding behavior in wild-type rats but not in homo...
Journal of Experimental Medicine, 2014
Notch activation; however, most of the Notch-regulated elements controlling de novo HSC generatio... more Notch activation; however, most of the Notch-regulated elements controlling de novo HSC generation are still unknown. Here, we identify putative direct Notch targets in the aorta-gonad-mesonephros (AGM) embryonic tissue by chromatin precipitation using antibodies against the Notch partner RBPj. By ChIP-on-chip analysis of the precipitated DNA, we identified 70 promoter regions that were candidates to be regulated by Notch in the AGM. One of the most enriched regions corresponded to the Cdca7 gene, which was subsequently confirmed to recruit the RBPj factor but also Notch in AGM cells. We found that during embryonic hematopoietic development, expression of Cdca7 is restricted to the hematopoietic clusters of the aorta, and it is strongly up-regulated in the hemogenic population during human embryonic stem cell hematopoietic differentiation in a Notchdependent manner. Down-regulation of Cdca7 mRNA in cultured AGM cells significantly induces hematopoietic differentiation and loss of the progenitor population. Finally, using loss-of-function experiments in zebrafish, we demonstrate that CDCA7 contributes to HSC emergence in vivo during embryonic development. Thus, our study identifies Cdca7 as an evolutionary conserved Notch target involved in HSC emergence.
Obesity (Silver Spring, Md.), 2012
Obesity is caused by an imbalance between energy intake and expenditure and has become a major he... more Obesity is caused by an imbalance between energy intake and expenditure and has become a major health-care problem in western society. The central melanocortin system plays a crucial role in the regulation of feeding and energy expenditure, and functional loss of melanocortin receptor 4 (MC4R) is the most common genetic cause of human obesity. In this study, we present the first functional Mc4r knockout model in the rat, resulting from an N-ethyl-N-nitrosourea mutagenesis-induced point mutation. In vitro observations revealed impaired membrane-binding and subsequent nonfunctionality of the receptor, whereas in vivo observations showed that functional loss of MC4R increased body weight, food intake, white adipose mass, and changed substrate preference. In addition, intracerebroventricular (ICV) administration of Agouti-Related Protein(79-129) (AgRP(79-129)), an MC4R inverse agonist, or Melanotan-II (MTII), an MC4R agonist, did affect feeding behavior in wild-type rats but not in homo...
Experimental Hematology, 2013
Journal of cell science, 2014
Sustained forward migration through a fibrillar extracellular matrix requires localization of pro... more Sustained forward migration through a fibrillar extracellular matrix requires localization of protrusive signals. Contact with fibronectin at the tip of a cell protrusion activates Rac1, and for linear migration it is necessary to dampen Rac1 activity in off-axial positions and redistribute Rac1 from non-protrusive membrane to the leading edge. Here, we identify interactions between coronin-1C (Coro1C), RCC2 and Rac1 that focus active Rac1 to a single protrusion. Coro1C mediates release of inactive Rac1 from non-protrusive membrane and is necessary for Rac1 redistribution to a protrusive tip and fibronectin-dependent Rac1 activation. The second component, RCC2, attenuates Rac1 activation outside the protrusive tip by binding to the Rac1 switch regions and competitively inhibiting GEF action, thus preventing off-axial protrusion. Depletion of Coro1C or RCC2 by RNA interference causes loss of cell polarity that results in shunting migration in 1D or 3D culture systems. Furthermore, mo...
The Golgi is essential for glycosylation of newly synthesised proteins including almost all cell-... more The Golgi is essential for glycosylation of newly synthesised proteins including almost all cell-surface and extracellular matrix proteoglycans. Giantin, encoded by the golgb1 gene, is a member of the golgin family of proteins that reside within the Golgi stack, but its function remains elusive. Loss of function of giantin in rats causes osteochondrodysplasia; knockout mice show milder defects, notably a cleft palate. In vitro, giantin has been implicated in Golgi organisation, biosynthetic trafficking, and ciliogenesis. Here we show that loss of function of giantin in zebrafish, using either morpholino or knockout techniques, causes defects in cilia function. Giantin morphants have fewer cilia in the neural tube and those remaining are longer. Mutants have the same number of cilia in the neural tube but these cilia are also elongated. Scanning electron microscopy shows that loss of giantin results in an accumulation of material at the ciliary tip, consistent with a loss of function of retrograde intraflagellar transport. Mutants show milder defects than morphants consistent with adaptation to loss of giantin.
Obesity (Silver Spring, Md.), 2012
Obesity is caused by an imbalance between energy intake and expenditure and has become a major he... more Obesity is caused by an imbalance between energy intake and expenditure and has become a major health-care problem in western society. The central melanocortin system plays a crucial role in the regulation of feeding and energy expenditure, and functional loss of melanocortin receptor 4 (MC4R) is the most common genetic cause of human obesity. In this study, we present the first functional Mc4r knockout model in the rat, resulting from an N-ethyl-N-nitrosourea mutagenesis-induced point mutation. In vitro observations revealed impaired membrane-binding and subsequent nonfunctionality of the receptor, whereas in vivo observations showed that functional loss of MC4R increased body weight, food intake, white adipose mass, and changed substrate preference. In addition, intracerebroventricular (ICV) administration of Agouti-Related Protein(79-129) (AgRP(79-129)), an MC4R inverse agonist, or Melanotan-II (MTII), an MC4R agonist, did affect feeding behavior in wild-type rats but not in homo...
Journal of Experimental Medicine, 2014
Notch activation; however, most of the Notch-regulated elements controlling de novo HSC generatio... more Notch activation; however, most of the Notch-regulated elements controlling de novo HSC generation are still unknown. Here, we identify putative direct Notch targets in the aorta-gonad-mesonephros (AGM) embryonic tissue by chromatin precipitation using antibodies against the Notch partner RBPj. By ChIP-on-chip analysis of the precipitated DNA, we identified 70 promoter regions that were candidates to be regulated by Notch in the AGM. One of the most enriched regions corresponded to the Cdca7 gene, which was subsequently confirmed to recruit the RBPj factor but also Notch in AGM cells. We found that during embryonic hematopoietic development, expression of Cdca7 is restricted to the hematopoietic clusters of the aorta, and it is strongly up-regulated in the hemogenic population during human embryonic stem cell hematopoietic differentiation in a Notchdependent manner. Down-regulation of Cdca7 mRNA in cultured AGM cells significantly induces hematopoietic differentiation and loss of the progenitor population. Finally, using loss-of-function experiments in zebrafish, we demonstrate that CDCA7 contributes to HSC emergence in vivo during embryonic development. Thus, our study identifies Cdca7 as an evolutionary conserved Notch target involved in HSC emergence.
Obesity (Silver Spring, Md.), 2012
Obesity is caused by an imbalance between energy intake and expenditure and has become a major he... more Obesity is caused by an imbalance between energy intake and expenditure and has become a major health-care problem in western society. The central melanocortin system plays a crucial role in the regulation of feeding and energy expenditure, and functional loss of melanocortin receptor 4 (MC4R) is the most common genetic cause of human obesity. In this study, we present the first functional Mc4r knockout model in the rat, resulting from an N-ethyl-N-nitrosourea mutagenesis-induced point mutation. In vitro observations revealed impaired membrane-binding and subsequent nonfunctionality of the receptor, whereas in vivo observations showed that functional loss of MC4R increased body weight, food intake, white adipose mass, and changed substrate preference. In addition, intracerebroventricular (ICV) administration of Agouti-Related Protein(79-129) (AgRP(79-129)), an MC4R inverse agonist, or Melanotan-II (MTII), an MC4R agonist, did affect feeding behavior in wild-type rats but not in homo...
Experimental Hematology, 2013
Journal of cell science, 2014
Sustained forward migration through a fibrillar extracellular matrix requires localization of pro... more Sustained forward migration through a fibrillar extracellular matrix requires localization of protrusive signals. Contact with fibronectin at the tip of a cell protrusion activates Rac1, and for linear migration it is necessary to dampen Rac1 activity in off-axial positions and redistribute Rac1 from non-protrusive membrane to the leading edge. Here, we identify interactions between coronin-1C (Coro1C), RCC2 and Rac1 that focus active Rac1 to a single protrusion. Coro1C mediates release of inactive Rac1 from non-protrusive membrane and is necessary for Rac1 redistribution to a protrusive tip and fibronectin-dependent Rac1 activation. The second component, RCC2, attenuates Rac1 activation outside the protrusive tip by binding to the Rac1 switch regions and competitively inhibiting GEF action, thus preventing off-axial protrusion. Depletion of Coro1C or RCC2 by RNA interference causes loss of cell polarity that results in shunting migration in 1D or 3D culture systems. Furthermore, mo...