(original) (raw)
from decimal import Decimal, getcontext from xmath import fma def horner_double(polynomial, x): s = 0.0 for c in polynomial: s = s*x + c return s def horner_fma(polynomial, x): s = 0.0 for c in polynomial: s = fma(s, x, c) return s def _two_sum(a, b): x = a + b t = x - a y = (a - (x - t)) + (b - t) return x, y def _two_product_fma(a, b): x = a*b y = fma(a, b, -x) return x, y def horner_compensated(polynomial, x): # Based on "Compensated Horner Scheme" # by S. Graillat, Ph. Langlois, N. Louvet, 2005 s = error = 0.0 for c in polynomial: p, pi = _two_product_fma(s, x) s, sigma = _two_sum(p, c) error = error*x + (pi + sigma) return s + error def horner_decimal(polynomial, x): polynomial, x = map(Decimal, polynomial), Decimal(x) s = Decimal(0.0) for c in polynomial: s = s*x + c return float(s) getcontext().prec = 100 polynomial, x = (1.0, -78.0, 2717.0, -55770.0, 749463.0, -6926634.0, 44990231.0, -206070150.0, 657206836.0, -1414014888.0, 1931559552.0, -1486442880.0, 479001600.0), 12.001 # Wilkinson's polynomial for f in (horner_double, horner_fma, horner_compensated, horner_decimal): print(repr(f(polynomial, x)), '\t', f.__name__)