Cem Özdoğan | Cankaya University (original) (raw)
Papers by Cem Özdoğan
MATERIALS TRANSACTIONS, 2013
ABSTRACT Sintering of Ag nanoparticles (NPs) is increasingly being used as a driving mechanism fo... more ABSTRACT Sintering of Ag nanoparticles (NPs) is increasingly being used as a driving mechanism for joining in the microelectronics industry. We therefore performed molecular dynamics simulations based on the embedded atom method (EAM) to study pressureless sintering kinetics of two Ag NPs in the size range of (4 to 20 nm), and sintering of three and four Ag NPs of 4 nm diameter. We found that the sintering process passed through three main stages. The first was the neck formation followed by a rapid increase of the neck radius at 50 K for 20 nm particles and at 10 K for smaller NPs. The second was characterized by a gradual linear increase of the neck radius to particle radius ratio as the temperature of the sintered structure was increased to the surface premelting point. Different than previous sintering studies, a twin boundary was formed during the second stage that relaxed the sintered structure and decreased the average potential energy (PE). The third stage of sintering was a rapid shrinkage during surface premelting of the sintered structure. Based on pore geometry, densification occurred during the first stage for three 4 nm particles and during the second stage for four 4 nm particles. Sintering rates obtained by our simulation were higher than those obtained by theoretical models generally used for predicting sintering rates of microparticles.
The Journal of Physical Chemistry C, 2013
ABSTRACT A molecular dynamics simulation based on the embedded-atom method was conducted at diffe... more ABSTRACT A molecular dynamics simulation based on the embedded-atom method was conducted at different sizes of single-crystal Ag nanoparticles (NPs) with diameters of 4 to 20 nm to find complete melting and surface premelting points. Unlike the previous theoretical models, our model can predict both complete melting and surface premelting points for a wider size range of NPs. Programmed heating at an equal rate was applied to all sizes of NPs. Melting kinetics showed three different trends that are, respectively, associated with NPs in the size ranges of 4 to 7 nm, 8 to 10 nm, and 12 to 20 nm. NPs in the first range melted at a single temperature without passing through a surface premelting stage. Melting of the second range started by forming a quasi-liquid layer that expanded to the core, followed by the formation of a liquid layer of 1.8 nm thickness that also subsequently expanded to the core with increasing temperature and completed the melting process. For particles in the third range, the 1.8 nm liquid layer was formed once the thickness of the quasi-liquid layer reached 5 nm. The liquid layer expanded to the core and formed thicker stable liquid layers as the temperature increased toward the complete melting point. The ratio of the quasi-liquid layer thickness to the NP radius showed a linear relationship with temperature.
Zeitschrift f�r Physik D Atoms, Molecules and Clusters, 1997
Romanian Journal of Information Science and Technology
The Journal of Physical Chemistry C
Physical review. B, Condensed matter
The O(N) and parallelization techniques have been successfully applied in tight-binding molecular... more The O(N) and parallelization techniques have been successfully applied in tight-binding molecular-dynamics simulations of single-walled carbon nanotubes (SWNTs) of various chiralities. The accuracy of the O(N) description is found to be enhanced by the use of basis functions of neighboring atoms (buffer). The importance of buffer size in evaluating the simulation time, total energy, and force values together with electronic temperature has been shown. Finally, through the local density of state results, the metallic and semiconducting behavior of (10x10) armchair and (17x0) zigzag SWNT s, respectively, has been demonstrated. Comment: 15 pages, 10 figures
Journal of Chemical Crystallography
Abstract The biologically important 2-amino-3-hydroxypyridine reacts with benzoyl chloride to giv... more Abstract The biologically important 2-amino-3-hydroxypyridine reacts with benzoyl chloride to give 2-(N-benzoylbenzamido)pyridine-3-yl benzoate. This synthesized compound has been studied by elemental analysis, X-ray crystallography and also theoretically by density functional theory (DFT) framework with B3LYP/6-311++G(d, p) level of theory. The molecules of this compound crystallize in the orthorhombic space group of P212121 and the crystal packing involves both hydrogen-bonding and C–H⋯π interaction. The vibrational normal modes of the molecular structure are investigated by ab initio method for both infrared intensities (IR) and for Raman activities. Furthermore, the corresponding assignments are discussed. Hydrogen and carbon atoms of the benzene rings are found to be highly active. Also, experimentally obtained IR spectrum is presented and compared with the available theoretical data. Experimentally and theoretically obtained IR spectrum are in good agreement. Graphical Abstrac...
ABSTRACT Data reduction is perhaps the most critical component in retrieving information from big... more ABSTRACT Data reduction is perhaps the most critical component in retrieving information from big data (i.e., petascale-sized data) in many data-mining processes. The central issue of these data reduction techniques is to save time and bandwidth in enabling the user to deal with larger datasets even in minimal resource environments, such as in desktop or small cluster systems. In this chapter, the authors examine the motivations behind why these reduction techniques are important in the analysis of big datasets. Then they present several basic reduction techniques in detail, stressing the advantages and disadvantages of each. The authors also consider signal processing techniques for mining big data by the use of discrete wavelet transformation and server-side data reduction techniques. Lastly, they include a general discussion on parallel algorithms for data reduction, with special emphasis given to parallel wavelet-based multi-resolution data reduction techniques on distributed memory systems using MPI and shared memory architectures on GPUs along with a demonstration of the improvement of performance and scalability for one case study.
International Journal of Modern Physics C, 2005
Journal of Molecular Structure: THEOCHEM, 2007
ICTON-MW 2008 - International Conference on Transparent Optical Networks "Mediterranean Winter" 2008 - Conference Proceedings, 2008
ABSTRACT
Journal of Physical Chemistry C, 2010
Physical Review B - Condensed Matter and Materials Physics, 2012
Materials Transactions, 2013
ABSTRACT Sintering of Ag nanoparticles (NPs) is increasingly being used as a driving mechanism fo... more ABSTRACT Sintering of Ag nanoparticles (NPs) is increasingly being used as a driving mechanism for joining in the microelectronics industry. We therefore performed molecular dynamics simulations based on the embedded atom method (EAM) to study pressureless sintering kinetics of two Ag NPs in the size range of (4 to 20 nm), and sintering of three and four Ag NPs of 4 nm diameter. We found that the sintering process passed through three main stages. The first was the neck formation followed by a rapid increase of the neck radius at 50 K for 20 nm particles and at 10 K for smaller NPs. The second was characterized by a gradual linear increase of the neck radius to particle radius ratio as the temperature of the sintered structure was increased to the surface premelting point. Different than previous sintering studies, a twin boundary was formed during the second stage that relaxed the sintered structure and decreased the average potential energy (PE). The third stage of sintering was a rapid shrinkage during surface premelting of the sintered structure. Based on pore geometry, densification occurred during the first stage for three 4 nm particles and during the second stage for four 4 nm particles. Sintering rates obtained by our simulation were higher than those obtained by theoretical models generally used for predicting sintering rates of microparticles.
Journal of Physical Chemistry C, 2013
ABSTRACT A molecular dynamics simulation based on the embedded-atom method was conducted at diffe... more ABSTRACT A molecular dynamics simulation based on the embedded-atom method was conducted at different sizes of single-crystal Ag nanoparticles (NPs) with diameters of 4 to 20 nm to find complete melting and surface premelting points. Unlike the previous theoretical models, our model can predict both complete melting and surface premelting points for a wider size range of NPs. Programmed heating at an equal rate was applied to all sizes of NPs. Melting kinetics showed three different trends that are, respectively, associated with NPs in the size ranges of 4 to 7 nm, 8 to 10 nm, and 12 to 20 nm. NPs in the first range melted at a single temperature without passing through a surface premelting stage. Melting of the second range started by forming a quasi-liquid layer that expanded to the core, followed by the formation of a liquid layer of 1.8 nm thickness that also subsequently expanded to the core with increasing temperature and completed the melting process. For particles in the third range, the 1.8 nm liquid layer was formed once the thickness of the quasi-liquid layer reached 5 nm. The liquid layer expanded to the core and formed thicker stable liquid layers as the temperature increased toward the complete melting point. The ratio of the quasi-liquid layer thickness to the NP radius showed a linear relationship with temperature.
The Journal of Physical Chemistry C, 2013
ABSTRACT A molecular dynamics simulation based on the embedded-atom method was conducted at diffe... more ABSTRACT A molecular dynamics simulation based on the embedded-atom method was conducted at different sizes of single-crystal Ag nanoparticles (NPs) with diameters of 4 to 20 nm to find complete melting and surface premelting points. Unlike the previous theoretical models, our model can predict both complete melting and surface premelting points for a wider size range of NPs. Programmed heating at an equal rate was applied to all sizes of NPs. Melting kinetics showed three different trends that are, respectively, associated with NPs in the size ranges of 4 to 7 nm, 8 to 10 nm, and 12 to 20 nm. NPs in the first range melted at a single temperature without passing through a surface premelting stage. Melting of the second range started by forming a quasi-liquid layer that expanded to the core, followed by the formation of a liquid layer of 1.8 nm thickness that also subsequently expanded to the core with increasing temperature and completed the melting process. For particles in the third range, the 1.8 nm liquid layer was formed once the thickness of the quasi-liquid layer reached 5 nm. The liquid layer expanded to the core and formed thicker stable liquid layers as the temperature increased toward the complete melting point. The ratio of the quasi-liquid layer thickness to the NP radius showed a linear relationship with temperature.
Procedia Computer Science, 2011
MATERIALS TRANSACTIONS, 2013
ABSTRACT Sintering of Ag nanoparticles (NPs) is increasingly being used as a driving mechanism fo... more ABSTRACT Sintering of Ag nanoparticles (NPs) is increasingly being used as a driving mechanism for joining in the microelectronics industry. We therefore performed molecular dynamics simulations based on the embedded atom method (EAM) to study pressureless sintering kinetics of two Ag NPs in the size range of (4 to 20 nm), and sintering of three and four Ag NPs of 4 nm diameter. We found that the sintering process passed through three main stages. The first was the neck formation followed by a rapid increase of the neck radius at 50 K for 20 nm particles and at 10 K for smaller NPs. The second was characterized by a gradual linear increase of the neck radius to particle radius ratio as the temperature of the sintered structure was increased to the surface premelting point. Different than previous sintering studies, a twin boundary was formed during the second stage that relaxed the sintered structure and decreased the average potential energy (PE). The third stage of sintering was a rapid shrinkage during surface premelting of the sintered structure. Based on pore geometry, densification occurred during the first stage for three 4 nm particles and during the second stage for four 4 nm particles. Sintering rates obtained by our simulation were higher than those obtained by theoretical models generally used for predicting sintering rates of microparticles.
The Journal of Physical Chemistry C, 2013
ABSTRACT A molecular dynamics simulation based on the embedded-atom method was conducted at diffe... more ABSTRACT A molecular dynamics simulation based on the embedded-atom method was conducted at different sizes of single-crystal Ag nanoparticles (NPs) with diameters of 4 to 20 nm to find complete melting and surface premelting points. Unlike the previous theoretical models, our model can predict both complete melting and surface premelting points for a wider size range of NPs. Programmed heating at an equal rate was applied to all sizes of NPs. Melting kinetics showed three different trends that are, respectively, associated with NPs in the size ranges of 4 to 7 nm, 8 to 10 nm, and 12 to 20 nm. NPs in the first range melted at a single temperature without passing through a surface premelting stage. Melting of the second range started by forming a quasi-liquid layer that expanded to the core, followed by the formation of a liquid layer of 1.8 nm thickness that also subsequently expanded to the core with increasing temperature and completed the melting process. For particles in the third range, the 1.8 nm liquid layer was formed once the thickness of the quasi-liquid layer reached 5 nm. The liquid layer expanded to the core and formed thicker stable liquid layers as the temperature increased toward the complete melting point. The ratio of the quasi-liquid layer thickness to the NP radius showed a linear relationship with temperature.
Zeitschrift f�r Physik D Atoms, Molecules and Clusters, 1997
Romanian Journal of Information Science and Technology
The Journal of Physical Chemistry C
Physical review. B, Condensed matter
The O(N) and parallelization techniques have been successfully applied in tight-binding molecular... more The O(N) and parallelization techniques have been successfully applied in tight-binding molecular-dynamics simulations of single-walled carbon nanotubes (SWNTs) of various chiralities. The accuracy of the O(N) description is found to be enhanced by the use of basis functions of neighboring atoms (buffer). The importance of buffer size in evaluating the simulation time, total energy, and force values together with electronic temperature has been shown. Finally, through the local density of state results, the metallic and semiconducting behavior of (10x10) armchair and (17x0) zigzag SWNT s, respectively, has been demonstrated. Comment: 15 pages, 10 figures
Journal of Chemical Crystallography
Abstract The biologically important 2-amino-3-hydroxypyridine reacts with benzoyl chloride to giv... more Abstract The biologically important 2-amino-3-hydroxypyridine reacts with benzoyl chloride to give 2-(N-benzoylbenzamido)pyridine-3-yl benzoate. This synthesized compound has been studied by elemental analysis, X-ray crystallography and also theoretically by density functional theory (DFT) framework with B3LYP/6-311++G(d, p) level of theory. The molecules of this compound crystallize in the orthorhombic space group of P212121 and the crystal packing involves both hydrogen-bonding and C–H⋯π interaction. The vibrational normal modes of the molecular structure are investigated by ab initio method for both infrared intensities (IR) and for Raman activities. Furthermore, the corresponding assignments are discussed. Hydrogen and carbon atoms of the benzene rings are found to be highly active. Also, experimentally obtained IR spectrum is presented and compared with the available theoretical data. Experimentally and theoretically obtained IR spectrum are in good agreement. Graphical Abstrac...
ABSTRACT Data reduction is perhaps the most critical component in retrieving information from big... more ABSTRACT Data reduction is perhaps the most critical component in retrieving information from big data (i.e., petascale-sized data) in many data-mining processes. The central issue of these data reduction techniques is to save time and bandwidth in enabling the user to deal with larger datasets even in minimal resource environments, such as in desktop or small cluster systems. In this chapter, the authors examine the motivations behind why these reduction techniques are important in the analysis of big datasets. Then they present several basic reduction techniques in detail, stressing the advantages and disadvantages of each. The authors also consider signal processing techniques for mining big data by the use of discrete wavelet transformation and server-side data reduction techniques. Lastly, they include a general discussion on parallel algorithms for data reduction, with special emphasis given to parallel wavelet-based multi-resolution data reduction techniques on distributed memory systems using MPI and shared memory architectures on GPUs along with a demonstration of the improvement of performance and scalability for one case study.
International Journal of Modern Physics C, 2005
Journal of Molecular Structure: THEOCHEM, 2007
ICTON-MW 2008 - International Conference on Transparent Optical Networks "Mediterranean Winter" 2008 - Conference Proceedings, 2008
ABSTRACT
Journal of Physical Chemistry C, 2010
Physical Review B - Condensed Matter and Materials Physics, 2012
Materials Transactions, 2013
ABSTRACT Sintering of Ag nanoparticles (NPs) is increasingly being used as a driving mechanism fo... more ABSTRACT Sintering of Ag nanoparticles (NPs) is increasingly being used as a driving mechanism for joining in the microelectronics industry. We therefore performed molecular dynamics simulations based on the embedded atom method (EAM) to study pressureless sintering kinetics of two Ag NPs in the size range of (4 to 20 nm), and sintering of three and four Ag NPs of 4 nm diameter. We found that the sintering process passed through three main stages. The first was the neck formation followed by a rapid increase of the neck radius at 50 K for 20 nm particles and at 10 K for smaller NPs. The second was characterized by a gradual linear increase of the neck radius to particle radius ratio as the temperature of the sintered structure was increased to the surface premelting point. Different than previous sintering studies, a twin boundary was formed during the second stage that relaxed the sintered structure and decreased the average potential energy (PE). The third stage of sintering was a rapid shrinkage during surface premelting of the sintered structure. Based on pore geometry, densification occurred during the first stage for three 4 nm particles and during the second stage for four 4 nm particles. Sintering rates obtained by our simulation were higher than those obtained by theoretical models generally used for predicting sintering rates of microparticles.
Journal of Physical Chemistry C, 2013
ABSTRACT A molecular dynamics simulation based on the embedded-atom method was conducted at diffe... more ABSTRACT A molecular dynamics simulation based on the embedded-atom method was conducted at different sizes of single-crystal Ag nanoparticles (NPs) with diameters of 4 to 20 nm to find complete melting and surface premelting points. Unlike the previous theoretical models, our model can predict both complete melting and surface premelting points for a wider size range of NPs. Programmed heating at an equal rate was applied to all sizes of NPs. Melting kinetics showed three different trends that are, respectively, associated with NPs in the size ranges of 4 to 7 nm, 8 to 10 nm, and 12 to 20 nm. NPs in the first range melted at a single temperature without passing through a surface premelting stage. Melting of the second range started by forming a quasi-liquid layer that expanded to the core, followed by the formation of a liquid layer of 1.8 nm thickness that also subsequently expanded to the core with increasing temperature and completed the melting process. For particles in the third range, the 1.8 nm liquid layer was formed once the thickness of the quasi-liquid layer reached 5 nm. The liquid layer expanded to the core and formed thicker stable liquid layers as the temperature increased toward the complete melting point. The ratio of the quasi-liquid layer thickness to the NP radius showed a linear relationship with temperature.
The Journal of Physical Chemistry C, 2013
ABSTRACT A molecular dynamics simulation based on the embedded-atom method was conducted at diffe... more ABSTRACT A molecular dynamics simulation based on the embedded-atom method was conducted at different sizes of single-crystal Ag nanoparticles (NPs) with diameters of 4 to 20 nm to find complete melting and surface premelting points. Unlike the previous theoretical models, our model can predict both complete melting and surface premelting points for a wider size range of NPs. Programmed heating at an equal rate was applied to all sizes of NPs. Melting kinetics showed three different trends that are, respectively, associated with NPs in the size ranges of 4 to 7 nm, 8 to 10 nm, and 12 to 20 nm. NPs in the first range melted at a single temperature without passing through a surface premelting stage. Melting of the second range started by forming a quasi-liquid layer that expanded to the core, followed by the formation of a liquid layer of 1.8 nm thickness that also subsequently expanded to the core with increasing temperature and completed the melting process. For particles in the third range, the 1.8 nm liquid layer was formed once the thickness of the quasi-liquid layer reached 5 nm. The liquid layer expanded to the core and formed thicker stable liquid layers as the temperature increased toward the complete melting point. The ratio of the quasi-liquid layer thickness to the NP radius showed a linear relationship with temperature.
Procedia Computer Science, 2011