Erik Andrulis | Case Western Reserve University (original) (raw)
Papers by Erik Andrulis
Thesis (Ph. D.)--State University of New York at Stony Brook, 1998. Includes bibliographical refe... more Thesis (Ph. D.)--State University of New York at Stony Brook, 1998. Includes bibliographical references (leaves 179-202).
PLoS ONE, 2013
Mitochondria are essential organelles that harbor a reduced genome, and expression of that genome... more Mitochondria are essential organelles that harbor a reduced genome, and expression of that genome requires regulated metabolism of its transcriptome by nuclear-encoded proteins. Despite extensive investigation, a comprehensive map of the yeast mitochondrial transcriptome has not been developed and all of the RNAmetabolizing proteins have not been identified, both of which are prerequisites to elucidating the basic RNA biology of mitochondria. Here, we present a mitochondrial transcriptome map of the yeast S288C reference strain. Using RNAseq and bioinformatics, we show the expression level of all transcripts, revise all promoter, origin of replication, and tRNA annotations, and demonstrate for the first time the existence of alternative splicing, mirror RNAs, and a novel RNA processing site in yeast mitochondria. The transcriptome map has revealed new aspects of mitochondrial RNA biology and we expect it will serve as a valuable resource. As a complement to the map, we present our compilation of all known yeast nuclear-encoded ribonucleases (RNases), and a screen of this dataset for those that are imported into mitochondria. We sought to identify RNases that are refractory to recovery in traditional mitochondrial screens due to an essential function or eclipsed accumulation in another cellular compartment. Using this in silico approach, the essential RNase of the nuclear and cytoplasmic exosome, Dis3p, emerges as a strong candidate. Bioinformatics and in vivo analyses show that Dis3p has a conserved and functional mitochondrialtargeting signal (MTS). A clean and marker-less chromosomal deletion of the Dis3p MTS results in a defect in the decay of intron and mirror RNAs, thus revealing a role for Dis3p in mitochondrial RNA decay.
... EXORIBONUCLEASE By MEGAN CHRISTINE MAMOLEN Submitted in partial fulfillment of the requiremen... more ... EXORIBONUCLEASE By MEGAN CHRISTINE MAMOLEN Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Dissertation advisor: Erik D. Andrulis, Ph.D. ... 2 Page 3. Copyright © 2010 by Megan Christine Mamolen All rights reserved 3 ...
Background: Dis3 is ribonuclease that acts directly in the processing, turnover, and surveillance... more Background: Dis3 is ribonuclease that acts directly in the processing, turnover, and surveillance of a large number of distinct RNA species. Evolutionarily conserved from eubacteria to eukaryotes and a crucial component of the RNA processing exosome, Dis3 has been shown to be essential in yeast and fly S2 cells. However, it is not known whether Dis3 has essential functions in a metazoan. This study inquires whether Dis3 is required for Drosophila development and viability and how Dis3 regulates the transcriptome in the developing fly.
Eukaryotic RNA turnover is regulated in part by the exosome, a nuclear and cytoplasmic complex of... more Eukaryotic RNA turnover is regulated in part by the exosome, a nuclear and cytoplasmic complex of ribonucleases (RNases) and RNA-binding proteins. The major RNase of the complex is thought to be Dis3, a multi-functional 3′–5′ exoribonuclease and endoribonuclease. Although it is known that Dis3 and core exosome subunits are recruited to transcriptionally active genes and to messenger RNA (mRNA) substrates, this recruitment is thought to occur indirectly. We sought to discover cis-acting elements that recruit Dis3 or other exosome subunits. Using a bioinformatic tool called RNA SCOPE to screen the 3′ untranslated regions of up-regulated transcripts from our published Dis3 depletion-derived transcriptomic data set, we identified several motifs as candidate instability elements. Secondary screening using a luciferase reporter system revealed that one cassette—harboring four elements—destabilized the reporter transcript. RNAi-based depletion of Dis3, Rrp6, Rrp4, Rrp40, or Rrp46 diminished the efficacy of cassette-mediated destabilization. Truncation analysis of the cassette showed that two exosome subunit-sensitive elements (ESSEs) destabilized the reporter. Point-directed mutagenesis of ESSE abrogated the destabilization effect. An examination of the transcriptomic data from exosome subunit depletion-based microarrays revealed that mRNAs with ESSEs are found in every up-regulated mRNA data set but are underrepresented or missing from the down-regulated data sets. Taken together, our findings imply a potentially novel mechanism of mRNA turnover that involves direct Dis3 and other exosome subunit recruitment to and/or regulation on mRNA substrates.► Successful use of a novel RNA-specific bioinformatic tool, RNA SCOPE. ► Identified novel 3′ UTR cis-acting element that destabilizes a reporter mRNA. ► Show exosome subunits are required for cis-acting element-mediated mRNA instability. ► Define precise sequence requirements of novel cis-acting element. ► Show that microarray-defined exosome subunit-regulated mRNAs have novel element.
Life is an inordinately complex unsolved puzzle. Despite significant theoretical progress, experi... more Life is an inordinately complex unsolved puzzle. Despite significant theoretical progress, experimental anomalies, paradoxes, and enigmas have revealed paradigmatic limitations. Thus, the advancement of scientific understanding requires new models that resolve fundamental problems. Here, I present a theoretical framework that economically fits evidence accumulated from examinations of life. This theory is based upon a straightforward and non-mathematical core model and proposes unique yet empirically consistent explanations for major phenomena including, but not limited to, quantum gravity, phase transitions of water, why living systems are predominantly CHNOPS (carbon, hydrogen, nitrogen, oxygen, phosphorus, and sulfur), homochirality of sugars and amino acids, homeoviscous adaptation, triplet code, and DNA mutations. The theoretical framework unifies the macrocosmic and microcosmic realms, validates predicted laws of nature, and solves the puzzle of the origin and evolution of cellular life in the universe. Life 2012, 2 2
Subunits of the RNA processing exosome assemble into structurally distinct protein complexes that... more Subunits of the RNA processing exosome assemble into structurally distinct protein complexes that function in disparate cellular compartments and RNA metabolic pathways. Here, in a genetic, cell biological and transcriptomic analysis, we examined the role of Dis3, an essential polypeptide with endo- and 3′ → 5′ exo-ribonuclease activity, in cell cycle progression. We present several lines of evidence that perturbation of DIS3 affects microtubule (MT) localization and structure in Saccharomyces cerevisiae. Cells with a DIS3 mutant: (a) accumulate anaphase and pre-anaphase mitotic spindles; (b) exhibit spindles that are misorientated and displaced from the bud neck; (c) harbour elongated spindle-associated astral MTs; (d) have an increased G1 astral MT length and number; and (e) are hypersensitive to MT poisons. Mutations in the core exosome genes RRP4 and MTR3 and the exosome cofactor gene MTR4, but not other exosome subunit gene mutants, also elicit MT phenotypes. RNA deep sequencing analysis (RNA-seq) shows broad changes in the levels of cell cycle- and MT-related transcripts in mutant strains. Collectively, the data presented in this study suggest an evolutionarily conserved role for Dis3 in linking RNA metabolism, MTs and cell cycle progression. Copyright © 2011 John Wiley & Sons, Ltd.
The Dis3 ribonuclease is a member of the hydrolytic RNR protein family. Although much progress ha... more The Dis3 ribonuclease is a member of the hydrolytic RNR protein family. Although much progress has been made in understanding the structure, function, and enzymatic activities of prokaryotic RNR family members RNase II and RNase R, there are no activity studies of the metazoan ortholog, Dis3. Here, we characterize the activity of the Drosophila melanogaster Dis3 (dDis3) protein. We find that dDis3 is active in the presence of various monovalent and divalent cations, and requires divalent cations for activity. dDis3 hydrolyzes compositionally distinct RNA substrates, yet releases different products depending upon the substrate. Additionally, dDis3 remains active when lacking N-terminal domains, suggesting that an independent active site resides in the C-terminus of the protein. Finally, a study of dDis3 interactions with dRrp6 and core exosome subunits in extracts revealed sensitivity to higher divalent cation concentrations and detergent, suggesting the presence of both ionic and hydrophobic interactions in dDis3–exosome complexes. Our study thus broadens our mechanistic understanding of the general ribonuclease activity of Dis3 and RNR family members.
Subcellular compartmentalization of exoribonucleases (RNAses) is an important control mechanism i... more Subcellular compartmentalization of exoribonucleases (RNAses) is an important control mechanism in the temporal and spatial regulation of RNA processing and decay. Despite much progress towards understanding RNAse substrates and functions, we know little of how RNAses are transported and assembled into functional, subcellularly restricted complexes. To gain insight into this issue, we are studying the exosome-binding protein Dis3, a processive 3′ to 5′ exoribonuclease. Here, we examine the interactions and subcellular localization of the Drosophila melanogaster Dis3 (dDis3) protein. N-terminal domain mutants of dDis3 abolish associations with the ‘core’ exosome, yet only reduce binding to the ‘nuclear’ exosome-associated factor dRrp6. We show that nuclear localization of dDis3 requires a C-terminal classic nuclear localization signal (NLS). Consistent with this, dDis3 specifically co-precipitates the NLS-binding protein importin-α3. Surprisingly, dDis3 constructs that lack or mutate the C-terminal NLS retain importin-α3 binding, suggesting that the interaction is indirect. Finally, we find that endogenous dDis3 and dRrp6 exhibit coordinated nuclear enrichment or exclusion, suggesting that dDis3, Rrp6 and importin-α3 interact in a complex independent of the core. We propose that the movement and deposition of this complex is important for the subcellular compartmentalization and regulation of the exosome core.
Background: Since S. cerevisiae undergoes closed mitosis, the nuclear envelope of the daughter nu... more Background: Since S. cerevisiae undergoes closed mitosis, the nuclear envelope of the daughter nucleus is continuous with that of the maternal nucleus at anaphase. Nevertheless, several constitutents of the maternal nucleus are not present in the daughter nucleus. The present study aims to identify proteins which impact the shape of the yeast nucleus and to learn whether modifications of shape are passed on to the next mitotic generation. The Esc1p protein of S. cerevisiae localizes to the periphery of the nucleoplasm, can anchor chromatin, and has been implicated in targeted silencing both at telomeres and at HMR.
Thesis (Ph. D.)--State University of New York at Stony Brook, 1998. Includes bibliographical refe... more Thesis (Ph. D.)--State University of New York at Stony Brook, 1998. Includes bibliographical references (leaves 179-202).
PLoS ONE, 2013
Mitochondria are essential organelles that harbor a reduced genome, and expression of that genome... more Mitochondria are essential organelles that harbor a reduced genome, and expression of that genome requires regulated metabolism of its transcriptome by nuclear-encoded proteins. Despite extensive investigation, a comprehensive map of the yeast mitochondrial transcriptome has not been developed and all of the RNAmetabolizing proteins have not been identified, both of which are prerequisites to elucidating the basic RNA biology of mitochondria. Here, we present a mitochondrial transcriptome map of the yeast S288C reference strain. Using RNAseq and bioinformatics, we show the expression level of all transcripts, revise all promoter, origin of replication, and tRNA annotations, and demonstrate for the first time the existence of alternative splicing, mirror RNAs, and a novel RNA processing site in yeast mitochondria. The transcriptome map has revealed new aspects of mitochondrial RNA biology and we expect it will serve as a valuable resource. As a complement to the map, we present our compilation of all known yeast nuclear-encoded ribonucleases (RNases), and a screen of this dataset for those that are imported into mitochondria. We sought to identify RNases that are refractory to recovery in traditional mitochondrial screens due to an essential function or eclipsed accumulation in another cellular compartment. Using this in silico approach, the essential RNase of the nuclear and cytoplasmic exosome, Dis3p, emerges as a strong candidate. Bioinformatics and in vivo analyses show that Dis3p has a conserved and functional mitochondrialtargeting signal (MTS). A clean and marker-less chromosomal deletion of the Dis3p MTS results in a defect in the decay of intron and mirror RNAs, thus revealing a role for Dis3p in mitochondrial RNA decay.
... EXORIBONUCLEASE By MEGAN CHRISTINE MAMOLEN Submitted in partial fulfillment of the requiremen... more ... EXORIBONUCLEASE By MEGAN CHRISTINE MAMOLEN Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Dissertation advisor: Erik D. Andrulis, Ph.D. ... 2 Page 3. Copyright © 2010 by Megan Christine Mamolen All rights reserved 3 ...
Background: Dis3 is ribonuclease that acts directly in the processing, turnover, and surveillance... more Background: Dis3 is ribonuclease that acts directly in the processing, turnover, and surveillance of a large number of distinct RNA species. Evolutionarily conserved from eubacteria to eukaryotes and a crucial component of the RNA processing exosome, Dis3 has been shown to be essential in yeast and fly S2 cells. However, it is not known whether Dis3 has essential functions in a metazoan. This study inquires whether Dis3 is required for Drosophila development and viability and how Dis3 regulates the transcriptome in the developing fly.
Eukaryotic RNA turnover is regulated in part by the exosome, a nuclear and cytoplasmic complex of... more Eukaryotic RNA turnover is regulated in part by the exosome, a nuclear and cytoplasmic complex of ribonucleases (RNases) and RNA-binding proteins. The major RNase of the complex is thought to be Dis3, a multi-functional 3′–5′ exoribonuclease and endoribonuclease. Although it is known that Dis3 and core exosome subunits are recruited to transcriptionally active genes and to messenger RNA (mRNA) substrates, this recruitment is thought to occur indirectly. We sought to discover cis-acting elements that recruit Dis3 or other exosome subunits. Using a bioinformatic tool called RNA SCOPE to screen the 3′ untranslated regions of up-regulated transcripts from our published Dis3 depletion-derived transcriptomic data set, we identified several motifs as candidate instability elements. Secondary screening using a luciferase reporter system revealed that one cassette—harboring four elements—destabilized the reporter transcript. RNAi-based depletion of Dis3, Rrp6, Rrp4, Rrp40, or Rrp46 diminished the efficacy of cassette-mediated destabilization. Truncation analysis of the cassette showed that two exosome subunit-sensitive elements (ESSEs) destabilized the reporter. Point-directed mutagenesis of ESSE abrogated the destabilization effect. An examination of the transcriptomic data from exosome subunit depletion-based microarrays revealed that mRNAs with ESSEs are found in every up-regulated mRNA data set but are underrepresented or missing from the down-regulated data sets. Taken together, our findings imply a potentially novel mechanism of mRNA turnover that involves direct Dis3 and other exosome subunit recruitment to and/or regulation on mRNA substrates.► Successful use of a novel RNA-specific bioinformatic tool, RNA SCOPE. ► Identified novel 3′ UTR cis-acting element that destabilizes a reporter mRNA. ► Show exosome subunits are required for cis-acting element-mediated mRNA instability. ► Define precise sequence requirements of novel cis-acting element. ► Show that microarray-defined exosome subunit-regulated mRNAs have novel element.
Life is an inordinately complex unsolved puzzle. Despite significant theoretical progress, experi... more Life is an inordinately complex unsolved puzzle. Despite significant theoretical progress, experimental anomalies, paradoxes, and enigmas have revealed paradigmatic limitations. Thus, the advancement of scientific understanding requires new models that resolve fundamental problems. Here, I present a theoretical framework that economically fits evidence accumulated from examinations of life. This theory is based upon a straightforward and non-mathematical core model and proposes unique yet empirically consistent explanations for major phenomena including, but not limited to, quantum gravity, phase transitions of water, why living systems are predominantly CHNOPS (carbon, hydrogen, nitrogen, oxygen, phosphorus, and sulfur), homochirality of sugars and amino acids, homeoviscous adaptation, triplet code, and DNA mutations. The theoretical framework unifies the macrocosmic and microcosmic realms, validates predicted laws of nature, and solves the puzzle of the origin and evolution of cellular life in the universe. Life 2012, 2 2
Subunits of the RNA processing exosome assemble into structurally distinct protein complexes that... more Subunits of the RNA processing exosome assemble into structurally distinct protein complexes that function in disparate cellular compartments and RNA metabolic pathways. Here, in a genetic, cell biological and transcriptomic analysis, we examined the role of Dis3, an essential polypeptide with endo- and 3′ → 5′ exo-ribonuclease activity, in cell cycle progression. We present several lines of evidence that perturbation of DIS3 affects microtubule (MT) localization and structure in Saccharomyces cerevisiae. Cells with a DIS3 mutant: (a) accumulate anaphase and pre-anaphase mitotic spindles; (b) exhibit spindles that are misorientated and displaced from the bud neck; (c) harbour elongated spindle-associated astral MTs; (d) have an increased G1 astral MT length and number; and (e) are hypersensitive to MT poisons. Mutations in the core exosome genes RRP4 and MTR3 and the exosome cofactor gene MTR4, but not other exosome subunit gene mutants, also elicit MT phenotypes. RNA deep sequencing analysis (RNA-seq) shows broad changes in the levels of cell cycle- and MT-related transcripts in mutant strains. Collectively, the data presented in this study suggest an evolutionarily conserved role for Dis3 in linking RNA metabolism, MTs and cell cycle progression. Copyright © 2011 John Wiley & Sons, Ltd.
The Dis3 ribonuclease is a member of the hydrolytic RNR protein family. Although much progress ha... more The Dis3 ribonuclease is a member of the hydrolytic RNR protein family. Although much progress has been made in understanding the structure, function, and enzymatic activities of prokaryotic RNR family members RNase II and RNase R, there are no activity studies of the metazoan ortholog, Dis3. Here, we characterize the activity of the Drosophila melanogaster Dis3 (dDis3) protein. We find that dDis3 is active in the presence of various monovalent and divalent cations, and requires divalent cations for activity. dDis3 hydrolyzes compositionally distinct RNA substrates, yet releases different products depending upon the substrate. Additionally, dDis3 remains active when lacking N-terminal domains, suggesting that an independent active site resides in the C-terminus of the protein. Finally, a study of dDis3 interactions with dRrp6 and core exosome subunits in extracts revealed sensitivity to higher divalent cation concentrations and detergent, suggesting the presence of both ionic and hydrophobic interactions in dDis3–exosome complexes. Our study thus broadens our mechanistic understanding of the general ribonuclease activity of Dis3 and RNR family members.
Subcellular compartmentalization of exoribonucleases (RNAses) is an important control mechanism i... more Subcellular compartmentalization of exoribonucleases (RNAses) is an important control mechanism in the temporal and spatial regulation of RNA processing and decay. Despite much progress towards understanding RNAse substrates and functions, we know little of how RNAses are transported and assembled into functional, subcellularly restricted complexes. To gain insight into this issue, we are studying the exosome-binding protein Dis3, a processive 3′ to 5′ exoribonuclease. Here, we examine the interactions and subcellular localization of the Drosophila melanogaster Dis3 (dDis3) protein. N-terminal domain mutants of dDis3 abolish associations with the ‘core’ exosome, yet only reduce binding to the ‘nuclear’ exosome-associated factor dRrp6. We show that nuclear localization of dDis3 requires a C-terminal classic nuclear localization signal (NLS). Consistent with this, dDis3 specifically co-precipitates the NLS-binding protein importin-α3. Surprisingly, dDis3 constructs that lack or mutate the C-terminal NLS retain importin-α3 binding, suggesting that the interaction is indirect. Finally, we find that endogenous dDis3 and dRrp6 exhibit coordinated nuclear enrichment or exclusion, suggesting that dDis3, Rrp6 and importin-α3 interact in a complex independent of the core. We propose that the movement and deposition of this complex is important for the subcellular compartmentalization and regulation of the exosome core.
Background: Since S. cerevisiae undergoes closed mitosis, the nuclear envelope of the daughter nu... more Background: Since S. cerevisiae undergoes closed mitosis, the nuclear envelope of the daughter nucleus is continuous with that of the maternal nucleus at anaphase. Nevertheless, several constitutents of the maternal nucleus are not present in the daughter nucleus. The present study aims to identify proteins which impact the shape of the yeast nucleus and to learn whether modifications of shape are passed on to the next mitotic generation. The Esc1p protein of S. cerevisiae localizes to the periphery of the nucleoplasm, can anchor chromatin, and has been implicated in targeted silencing both at telomeres and at HMR.
This is a presentation I gave at the X International Ontology Congress; Physis: From Elementary P... more This is a presentation I gave at the X International Ontology Congress; Physis: From Elementary Particles to Human Nature. It is a converted Power Point presentation.