(original) (raw)
TY - JOUR AU - Kay, R. W. AU - Mahlburg-Kay, S. PY - 1991 DA - 1991/06/01 TI - Creation and destruction of lower continental crust JO - Geologische Rundschau SP - 259 EP - 278 VL - 80 IS - 2 AB - Bulk continental crustal composition results from the net mass exchange between crust and mantle. Crustal addition is mainly by the rise of mantle-derived melts into and through the crust at convergent plate margins and (at a lower rate) within plate interiors. Crustal subtraction occurs by subduction of uppermost crust (sediment, continent-derived elements in hydrothermally altered oceanic crust), by subcrustal erosion at convergent margins and by delamination of lowermost crust following densifying gabbro-eclogite phase transformations that result in a crust-mantle density inversion. As the phase transformations only occur at high pressure, tectonic overthickening of the crust (to > 50 km) is required. The lowermost crust at continent-ocean and continent-continent convergent plate margins is more likely to experience these transient overthickening events (compressional orogenies) than is intraplate crust. Correspondingly, the preservation probability of mafic lower crust is greater for intraplate than for plate margin localities. Delamination of mafic lower crust is the main process for removing basic composition rocks from the crust, thereby creating »andesitic« crustal composition. Evidence for lower crustal delamination comes from »geochemically balanced« cross section of compressional belts, and from the high La/Yb ratios, lack of Eu anomalies, and high Sr contents in deep crustallyderived magmas from the base of tectonically over-thickened crust. These crustal magmas are often accompanied by mantle-derived basalts associated with crustal uplift and extension, both related to the coincident delamination of underlying mantle lithosphere. SN - 1432-1149 UR - https://doi.org/10.1007/BF01829365 DO - 10.1007/BF01829365 ID - Kay1991 ER -