(original) (raw)

TY - JOUR AU - Chen, Jiong AU - Godt, Dorothea AU - Gunsalus, Kris AU - Kiss, Istvan AU - Goldberg, Michael AU - Laski, Frank A. PY - 2001 DA - 2001/02/01 TI - Cofilin/ADF is required for cell motility during Drosophila ovary development and oogenesis JO - Nature Cell Biology SP - 204 EP - 209 VL - 3 IS - 2 AB - The driving force behind cell motility is the actin cytoskeleton. Filopodia and lamellipodia are formed by the polymerization and extension of actin filaments towards the cell membrane1,2. This polymerization at the barbed end of the filament is balanced by depolymerization at the pointed end, recycling the actin in a 'treadmilling' process2,3. One protein involved in this process is cofilin/actin-depolymerizing factor (ADF), which can depolymerize actin filaments, allowing treadmilling to occur at an accelerated rate3,4. Cofilin/ADF is an actin-binding protein that is required for actin-filament disassembly, cytokinesis and the organization of muscle actin filaments4,5,6,7. There is also evidence that cofilin/ADF enhances cell motility3,8,9, although a direct requirement in vivo has not yet been shown. Here we show that Drosophila cofilin/ADF6,10, which is encoded by the twinstar (tsr) gene, promotes cell movements during ovary development and oogenesis. During larval development, cofilin/ADF is required for the cell rearrangement needed for formation of terminal filaments, stacks of somatic cells that are important for the initiation of ovarioles. It is also required for the migration of border cells during oogenesis. These results show that cofilin/ADF is an important regulator of actin-based cell motility during Drosophila development. SN - 1476-4679 UR - https://doi.org/10.1038/35055120 DO - 10.1038/35055120 ID - Chen2001 ER -