Thomas Borch - Profile on Academia.edu (original) (raw)

Papers by Thomas Borch

Research paper thumbnail of Can Reactive Iron Preserve Organic Carbon during Permafrost Collapse?

Can Reactive Iron Preserve Organic Carbon during Permafrost Collapse?

Goldschmidt Abstracts

Research paper thumbnail of Impact of redox chemistry on the fate and transport of arsenic and uranium at an abandoned uranium mine

Impact of redox chemistry on the fate and transport of arsenic and uranium at an abandoned uraniu... more Impact of redox chemistry on the fate and transport of arsenic and uranium at an abandoned uranium mine LYNDSAY D. TROYER1, THOMAS BORCH1,2,*, LANCE N. LARSON3 AND JAMES J. STONE3 1Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA 2Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA (*correspondence: borch@colostate.edu) 3Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA

Research paper thumbnail of Reusing oil and gas produced water for agricultural irrigation: Effects on soil health and the soil microbiome

Reusing oil and gas produced water for agricultural irrigation: Effects on soil health and the soil microbiome

Science of The Total Environment

Produced water (PW) is a major waste-product of oil and gas production that some consider a viabl... more Produced water (PW) is a major waste-product of oil and gas production that some consider a viable agricultural irrigation water source. However, the presence of petroleum hydrocarbons, toxic metals and potentially high salinity of PW may be deleterious for soil health. Thus, we irrigated wheat with minimally treated PW to investigate effects on soil health, wheat growth, and the soil microbiome. Irrigation treatments included control irrigation water (IW), 1% and 5% PW dilutions (1% PW, 5% PW), and a saltwater solution with salinity equivalent to the 5% PW dilution (SW). Wheat was irrigated three times a week, for a total of 2.1 L per pot by harvest. During wheat growth, we measured plant physiological parameters, soil electrical conductivity, as well as profiled soil microbial diversity by performing 16S ribosomal ribonucleic acid (rRNA) gene analysis. Soil health parameters were measured after harvest, including chemical, biological, physical, and nutrient properties that were used to calculate an overall soil health index (SQI). SQI analysis revealed that the SW and 5% PW treatments had significantly reduced soil health as compared to the control. Furthermore, the 16S rRNA gene analysis showed that the microbial community membership and structure was significantly different between irrigation treatments, highlighting shifts in the soil microbiome which may impact soil biochemical cycling. Both the SW- and 5% PW-treated wheat had reduced yields as compared to the control. Our results indicate that irrigating wheat with minimally treated PW may result in yield decreases, as well as reducing both overall soil health and soil microbial community diversity. Future large-scale field studies are needed to determine the long-term soil health effects of PW on different soil types and crops.

Research paper thumbnail of Hydrogeomorphic controls on soil carbon composition in two classes of subalpine wetlands

Biogeochemistry

Wetlands play a vital role in terrestrial carbon (C) sequestration, but the sensitivity of their ... more Wetlands play a vital role in terrestrial carbon (C) sequestration, but the sensitivity of their C stocks to disturbance remains uncertain, requiring enhanced understanding of the processes that govern C storage and removal. The unique conditions in wetlands from different hydrogeomorphic (HGM) classes likely regulate the cycling, storage and vulnerabilities of wetland soil C stocks. To determine how differences in hydrogeomorphic setting influence soil organic carbon (SOC) processing, we compared C content and composition between depressional and slope wetlands located in the Colorado Rocky Mountains. Isolated depressional wetlands were characterized by seasonally declining water tables, slow discharge, high clay content, and thick organic horizons. Slope wetlands received perennial groundwater inputs and had coarser soil textures and thinner organic horizons. Seasonal snowmelt inputs coupled with low hydrologic discharge and higher clay content in depressional wetlands were predicted to sustain anoxic conditions, leading to high SOC content and chemically reduced C compounds. Depressional wetland soils had higher SOC content at depth and higher porewater DOC concentrations compared to slope wetland soils. Solid-state 13 C nuclear magnetic resonance spectroscopy demonstrated that aliphatic

Research paper thumbnail of The generation and redistribution of soil cations in high elevation catenas in the Fraser Experimental Forest, Colorado, U.S

Geoderma

Pedogenic processes imprint their signature on soils over the course of thousands to millions of ... more Pedogenic processes imprint their signature on soils over the course of thousands to millions of years in most soil systems. Variation in soil forming processessuch as parent material weathering, organic material additions, hydrologic processes, and atmospheric additionsaccount for the distribution and sourcing of cations in ecosystems, and hence exert a strong influence on ecosystem productivity. Soil nutrient dynamics of cations also provide an indication of the dominant soil forming processes at work in a particular system. To gain insight into the generation and distribution of the soil cation pool in the Fraser Experimental Forest (FEF), we combined geochemical mass balance techniques and isotopic analyses of soil geochemical data to pedons across eight soil catenas in complex mountain terrain typical of the central Rocky Mountains. We found that mass gains in the FEF soils are primarily attributable to pedogenic additions of Ca to the soil mantle via atmospheric dust, and specifically that soil catenas on the summit landscapes were most enriched in Ca. Our data also show that atmospheric deposition contributions (calculated using Sr isotope ratios) to soils is as high as 82% (± 3% SD), and that this isotopic signature in A-horizons and subsurface soil horizons diverges along a soil catena, due to both vertical and lateral hydrologic redistribution processes. Our results suggest that long term soil development and associated chemical signatures at the FEF are principally driven by the coupling of landscape scale cation supply processes, snow distribution, and snowmelt dynamics. Soil development models describing pedogenesis across catenas in montane ecosystems must pay special attention to atmospheric inputs and their redistribution. Any changes to these dynamics will affect productivity and soil/water chemistry in such ecosystems as investigated here.

Research paper thumbnail of Composition-Dependent Sorptive Fractionation of Anthropogenic Dissolved Organic Matter by Fe(III)-Montmorillonite

Soil Systems

Water transports organic matter through soils, where mineral-organic associations form to retain ... more Water transports organic matter through soils, where mineral-organic associations form to retain dissolved organic matter ("DOM"), influencing terrestrial carbon cycling, nutrient availability for plant growth, and other soil organic matter functions. We combined Fourier transform ion cyclotron resonance mass spectrometry with novel data analysis techniques to examine the role of sorptive fractionation in the associations between Fe(III)-montmorillonite and DOM from composted biosolids ("anthropogenic DOM"). To examine the influence of DOM composition on sorption and sorptive fractionation, we used resin-based separation to produce DOM subsamples with different molecular compositions and chemical properties. A large proportion (45 to 64%) of the initial carbon in every DOM solution sorbed to the Fe(III)-montmorillonite. However, when the compositions of the initial solutions were compared to the sorbed organic matter, the computed changes in composition were lower (10 to 32%). In fact, non-selective sorption was more important than selective sorption in every sample, except for the hydrophilic neutral (HiN) fraction, where high nitrogen content and acidic conditions appeared to enhance sorptive fractionation. The results from this study demonstrate that the importance of sorptive fractionation varies with DOM composition and other factors, and that non-selective sorption can contribute substantially to the formation of mineral-organic associations.

Research paper thumbnail of Organic coating on biochar explains its nutrient retention and stimulation of soil fertility

Nature communications, Oct 20, 2017

Amending soil with biochar (pyrolized biomass) is suggested as a globally applicable approach to ... more Amending soil with biochar (pyrolized biomass) is suggested as a globally applicable approach to address climate change and soil degradation by carbon sequestration, reducing soil-borne greenhouse-gas emissions and increasing soil nutrient retention. Biochar was shown to promote plant growth, especially when combined with nutrient-rich organic matter, e.g., co-composted biochar. Plant growth promotion was explained by slow release of nutrients, although a mechanistic understanding of nutrient storage in biochar is missing. Here we identify a complex, nutrient-rich organic coating on co-composted biochar that covers the outer and inner (pore) surfaces of biochar particles using high-resolution spectro(micro)scopy and mass spectrometry. Fast field cycling nuclear magnetic resonance, electrochemical analysis and gas adsorption demonstrated that this coating adds hydrophilicity, redox-active moieties, and additional mesoporosity, which strengthens biochar-water interactions and thus enh...

Research paper thumbnail of Temporal characterization and statistical analysis of flowback and produced waters and their potential for reuse

Temporal characterization and statistical analysis of flowback and produced waters and their potential for reuse

The Science of the total environment, Jan 17, 2017

Hydraulic fracturing (HF) has allowed for the utilization of previously unattainable shale oil an... more Hydraulic fracturing (HF) has allowed for the utilization of previously unattainable shale oil and gas (O&G) resources. After HF is complete, the waters used to increase the facies' permeability return uphole as wastewaters. When these waters return to the surface, they are characterized by complex organic and inorganic chemistry, and can pose a health risk if not handled correctly. Therefore, these waters must be treated or disposed of properly. However, the variability of these waters' chemical composition over time is poorly understood and likely limits the applicability of their reuse. This study examines the water chemistry of a hydraulically fractured site in the Niobrara formation throughout the flowback period. Samples were collected every other day for the first 18days, then on a regular basis for three months. We identified HF fluid additives, including benzalkonium chlorides (BACs), alkyl ethoxylates (AEOs), and polyethylene glycols (PEGs), as well as geogenic com...

Research paper thumbnail of Natural Attenuation of Nonionic Surfactants Used in Hydraulic Fracturing Fluids: Degradation Rates, Pathways, and Mechanisms

Environmental science & technology, Jan 13, 2017

Hydraulic fracturing fluids are injected into shales to extend fracture networks that enhance oil... more Hydraulic fracturing fluids are injected into shales to extend fracture networks that enhance oil and natural gas production from unconventional reservoirs. Here we evaluated the biodegradability of three widely used nonionic polyglycol ether surfactants (alkyl ethoxylates (AEOs), nonylphenol ethoxylates (NPEOs), and polypropylene glycols (PPGs)) that function as weatherizers, emulsifiers, wetting agents, and corrosion inhibitors in injected fluids. Under anaerobic conditions, we observed complete removal of AEOs and NPEOs from solution within 3 weeks regardless of whether surfactants were part of a chemical mixture or amended as individual additives. Microbial enzymatic chain shortening was responsible for a shift in ethoxymer molecular weight distributions and the accumulation of the metabolite acetate. PPGs bioattenuated the slowest, producing sizable concentrations of acetone, an isomer of propionaldehyde. Surfactant chain shortening was coupled to an increased abundance of the ...

Research paper thumbnail of Biogenic non-crystalline U(IV) revealed as major component in uranium ore deposits

Nature Communications

Historically, it is believed that crystalline uraninite, produced via the abiotic reduction of he... more Historically, it is believed that crystalline uraninite, produced via the abiotic reduction of hexavalent uranium (U (VI)) is the dominant reduced U species formed in low-temperature uranium roll-front ore deposits. Here we show that non-crystalline U (IV) generated through biologically mediated U (VI) reduction is the predominant U (IV) species in an undisturbed U roll-front ore deposit in Wyoming, USA. Characterization of U species revealed that the majority (B58-89%) of U is bound as U (IV) to C-containing organic functional groups or inorganic carbonate, while uraninite and U (VI) represent only minor components. The uranium deposit exhibited mostly 238 U-enriched isotope signatures, consistent with largely biotic reduction of U (VI) to U (IV). This finding implies that biogenic processes are more important to uranium ore genesis than previously understood. The predominance of a relatively labile form of U (IV) also provides an opportunity for a more economical and environmentally benign mining process, as well as the design of more effective post-mining restoration strategies and human health-risk assessment.

Research paper thumbnail of Downhole Transformation of the Hydraulic Fracturing Fluid Biocide Glutaraldehyde: Implications for Flowback and Produced Water Quality

Environmental Science & Technology

Hydraulic fracturing fluid (HFF) additives are used to enhance oil and gas extraction from unconv... more Hydraulic fracturing fluid (HFF) additives are used to enhance oil and gas extraction from unconventional shale formations. Several kilometers downhole, these organic chemicals are exposed to temperatures up to 200°C, pressures above 10 MPa, high salinities, and a pH range from 5−8. Despite this, very little is known about the fate of HFF additives under these extreme conditions. Here, stainless steel reactors are used to simulate the downhole chemistry of the commonly used HFF biocide glutaraldehyde (GA). The results show that GA rapidly (t 1/2 < 1 h) autopolymerizes, forming water-soluble dimers and trimers, and eventually precipitates out at high temperatures (∼140°C) and/or alkaline pH. Interestingly, salinity was found to significantly inhibit GA transformation. Pressure and shale did not affect GA transformation and/or removal from the bulk fluid. On the basis of experimental pseudo-second-order rate constants, a kinetic model for GA downhole half-life predictions for any combination of these conditions within the limits tested was developed. These findings illustrate that the biocidal GA monomer has limited time to control microbial activity in hot and/or alkaline shales, and may return along with its aqueous transformation products to the surface via flowback and produced water in cooler, more acidic, and saline shales.

Research paper thumbnail of Complexation and Redox Buffering of Iron(II) by Dissolved Organic Matter

Environmental Science & Technology

Iron (Fe) bioavailability depends upon its solubility and oxidation state, which are strongly inf... more Iron (Fe) bioavailability depends upon its solubility and oxidation state, which are strongly influenced by complexation with natural organic matter (NOM). Despite observations of Fe(II)-NOM associations under conditions favorable for Fe oxidation, the molecular mechanisms by which NOM influences Fe(II) oxidation remain poorly understood. In this study, we used X-ray absorption spectroscopy to determine the coordination environment of Fe(II) associated with NOM (as-received and chemically reduced) at pH 7, and investigated the effect of NOM complexation on Fe(II) redox stability. Linear combination fitting of extended X-ray absorption fine structure (EXAFS) data using reference organic ligands demonstrated that Fe(II) was complexed primarily by carboxyl functional groups in reduced NOM. Functional groups more likely to preserve Fe(II) represent much smaller fractions of NOM-bound Fe(II). Fe(II) added to anoxic solutions of as-received NOM oxidized to Fe(III) and remained organically complexed. Iron oxidation experiments revealed that the presence of reduced NOM limited Fe(II) oxidation, with over 50% of initial Fe(II) remaining after 4 h. These results suggest reduced NOM may preserve Fe(II) by functioning both as redox buffer and complexant, which may help explain the presence of Fe(II) in oxic circumneutral waters.

Research paper thumbnail of Spills of Hydraulic Fracturing Chemicals on Agricultural Topsoil: Biodegradation, Sorption, and Co-contaminant Interactions

Environmental Science & Technology

Hydraulic fracturing frequently occurs on agricultural land. Yet the extent of sorption, transfor... more Hydraulic fracturing frequently occurs on agricultural land. Yet the extent of sorption, transformation, and interactions among the numerous organic frac fluid and oil and gas wastewater constituents upon environmental release is hardly known. Thus, this study aims to advance our current understanding of processes that control the environmental fate and toxicity of commonly used hydraulic fracturing chemicals. Poly(ethylene glycol) surfactants were completely biodegraded in agricultural topsoil within 42−71 days, but their transformation was impeded in the presence of the biocide glutaraldehyde and was completely inhibited by salt at concentrations typical for oil and gas wastewater. At the same time, aqueous glutaraldehyde concentrations decreased due to sorption to soil and were completely biodegraded within 33−57 days. While no aqueous removal of polyacrylamide friction reducer was observed over a period of 6 months, it cross-linked with glutaraldehyde, further lowering the biocide's aqueous concentration. These findings highlight the necessity to consider co-contaminant effects when we evaluate the risk of frac fluid additives and oil and gas wastewater constituents in agricultural soils in order to fully understand their human health impacts, likelihood for crop uptake, and potential for groundwater contamination.

Research paper thumbnail of Watershed-Scale Impacts from Surface Water Disposal of Oil and Gas Wastewater in Western Pennsylvania

Environmental science & technology, 2017

Combining horizontal drilling with high volume hydraulic fracturing has increased extraction of h... more Combining horizontal drilling with high volume hydraulic fracturing has increased extraction of hydrocarbons from low-permeability oil and gas (O&G) formations across the United States; accompanied by increased wastewater production. Surface water discharges of O&G wastewater by centralized waste treatment (CWT) plants pose risks to aquatic and human health. We evaluated the impact of surface water disposal of O&G wastewater from CWT plants upstream of the Conemaugh River Lake (dam controlled reservoir) in western Pennsylvania. Regulatory compliance data were collected to calculate annual contaminant loads (Ba, Cl, total dissolved solids (TDS)) to document historical industrial activity. In this study, two CWT plants 10 and 19 km upstream of a reservoir left geochemical signatures in sediments and porewaters corresponding to peak industrial activity that occurred 5 to 10 years earlier. Sediment cores were sectioned for the collection of paired samples of sediment and porewater, and ...

Research paper thumbnail of Use of reversed-phase high-performance liquid chromatography-diode array detection for complete separation of 2,4,6-trinitrotoluene metabolites and EPA Method 8330 explosives: influence of temperature and an ion-pair reagent

Use of reversed-phase high-performance liquid chromatography-diode array detection for complete separation of 2,4,6-trinitrotoluene metabolites and EPA Method 8330 explosives: influence of temperature and an ion-pair reagent

Journal of Chromatography a, Jan 2, 2004

Research paper thumbnail of Impact of Ferrihydrite and Anthraquinone-2,G-Disulfonate on the Reductive Transformation of 2,4,6-Trinitrotoluene by a Gram-Positive Fermenting Bacterium

Impact of Ferrihydrite and Anthraquinone-2,G-Disulfonate on the Reductive Transformation of 2,4,6-Trinitrotoluene by a Gram-Positive Fermenting Bacterium

Environmental Science Technology, 2005

Research paper thumbnail of Troyer SI 2014

Research paper thumbnail of Hydraulic fracturing surfactants

Hydraulic fracturing surfactants

Research paper thumbnail of Porsch Sup 2014

Research paper thumbnail of Soft X-ray spectromicroscopy study of chemical heterogeneities in iron precipitates formed at or near bacterial cells

Research paper thumbnail of Can Reactive Iron Preserve Organic Carbon during Permafrost Collapse?

Can Reactive Iron Preserve Organic Carbon during Permafrost Collapse?

Goldschmidt Abstracts

Research paper thumbnail of Impact of redox chemistry on the fate and transport of arsenic and uranium at an abandoned uranium mine

Impact of redox chemistry on the fate and transport of arsenic and uranium at an abandoned uraniu... more Impact of redox chemistry on the fate and transport of arsenic and uranium at an abandoned uranium mine LYNDSAY D. TROYER1, THOMAS BORCH1,2,*, LANCE N. LARSON3 AND JAMES J. STONE3 1Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA 2Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA (*correspondence: borch@colostate.edu) 3Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA

Research paper thumbnail of Reusing oil and gas produced water for agricultural irrigation: Effects on soil health and the soil microbiome

Reusing oil and gas produced water for agricultural irrigation: Effects on soil health and the soil microbiome

Science of The Total Environment

Produced water (PW) is a major waste-product of oil and gas production that some consider a viabl... more Produced water (PW) is a major waste-product of oil and gas production that some consider a viable agricultural irrigation water source. However, the presence of petroleum hydrocarbons, toxic metals and potentially high salinity of PW may be deleterious for soil health. Thus, we irrigated wheat with minimally treated PW to investigate effects on soil health, wheat growth, and the soil microbiome. Irrigation treatments included control irrigation water (IW), 1% and 5% PW dilutions (1% PW, 5% PW), and a saltwater solution with salinity equivalent to the 5% PW dilution (SW). Wheat was irrigated three times a week, for a total of 2.1 L per pot by harvest. During wheat growth, we measured plant physiological parameters, soil electrical conductivity, as well as profiled soil microbial diversity by performing 16S ribosomal ribonucleic acid (rRNA) gene analysis. Soil health parameters were measured after harvest, including chemical, biological, physical, and nutrient properties that were used to calculate an overall soil health index (SQI). SQI analysis revealed that the SW and 5% PW treatments had significantly reduced soil health as compared to the control. Furthermore, the 16S rRNA gene analysis showed that the microbial community membership and structure was significantly different between irrigation treatments, highlighting shifts in the soil microbiome which may impact soil biochemical cycling. Both the SW- and 5% PW-treated wheat had reduced yields as compared to the control. Our results indicate that irrigating wheat with minimally treated PW may result in yield decreases, as well as reducing both overall soil health and soil microbial community diversity. Future large-scale field studies are needed to determine the long-term soil health effects of PW on different soil types and crops.

Research paper thumbnail of Hydrogeomorphic controls on soil carbon composition in two classes of subalpine wetlands

Biogeochemistry

Wetlands play a vital role in terrestrial carbon (C) sequestration, but the sensitivity of their ... more Wetlands play a vital role in terrestrial carbon (C) sequestration, but the sensitivity of their C stocks to disturbance remains uncertain, requiring enhanced understanding of the processes that govern C storage and removal. The unique conditions in wetlands from different hydrogeomorphic (HGM) classes likely regulate the cycling, storage and vulnerabilities of wetland soil C stocks. To determine how differences in hydrogeomorphic setting influence soil organic carbon (SOC) processing, we compared C content and composition between depressional and slope wetlands located in the Colorado Rocky Mountains. Isolated depressional wetlands were characterized by seasonally declining water tables, slow discharge, high clay content, and thick organic horizons. Slope wetlands received perennial groundwater inputs and had coarser soil textures and thinner organic horizons. Seasonal snowmelt inputs coupled with low hydrologic discharge and higher clay content in depressional wetlands were predicted to sustain anoxic conditions, leading to high SOC content and chemically reduced C compounds. Depressional wetland soils had higher SOC content at depth and higher porewater DOC concentrations compared to slope wetland soils. Solid-state 13 C nuclear magnetic resonance spectroscopy demonstrated that aliphatic

Research paper thumbnail of The generation and redistribution of soil cations in high elevation catenas in the Fraser Experimental Forest, Colorado, U.S

Geoderma

Pedogenic processes imprint their signature on soils over the course of thousands to millions of ... more Pedogenic processes imprint their signature on soils over the course of thousands to millions of years in most soil systems. Variation in soil forming processessuch as parent material weathering, organic material additions, hydrologic processes, and atmospheric additionsaccount for the distribution and sourcing of cations in ecosystems, and hence exert a strong influence on ecosystem productivity. Soil nutrient dynamics of cations also provide an indication of the dominant soil forming processes at work in a particular system. To gain insight into the generation and distribution of the soil cation pool in the Fraser Experimental Forest (FEF), we combined geochemical mass balance techniques and isotopic analyses of soil geochemical data to pedons across eight soil catenas in complex mountain terrain typical of the central Rocky Mountains. We found that mass gains in the FEF soils are primarily attributable to pedogenic additions of Ca to the soil mantle via atmospheric dust, and specifically that soil catenas on the summit landscapes were most enriched in Ca. Our data also show that atmospheric deposition contributions (calculated using Sr isotope ratios) to soils is as high as 82% (± 3% SD), and that this isotopic signature in A-horizons and subsurface soil horizons diverges along a soil catena, due to both vertical and lateral hydrologic redistribution processes. Our results suggest that long term soil development and associated chemical signatures at the FEF are principally driven by the coupling of landscape scale cation supply processes, snow distribution, and snowmelt dynamics. Soil development models describing pedogenesis across catenas in montane ecosystems must pay special attention to atmospheric inputs and their redistribution. Any changes to these dynamics will affect productivity and soil/water chemistry in such ecosystems as investigated here.

Research paper thumbnail of Composition-Dependent Sorptive Fractionation of Anthropogenic Dissolved Organic Matter by Fe(III)-Montmorillonite

Soil Systems

Water transports organic matter through soils, where mineral-organic associations form to retain ... more Water transports organic matter through soils, where mineral-organic associations form to retain dissolved organic matter ("DOM"), influencing terrestrial carbon cycling, nutrient availability for plant growth, and other soil organic matter functions. We combined Fourier transform ion cyclotron resonance mass spectrometry with novel data analysis techniques to examine the role of sorptive fractionation in the associations between Fe(III)-montmorillonite and DOM from composted biosolids ("anthropogenic DOM"). To examine the influence of DOM composition on sorption and sorptive fractionation, we used resin-based separation to produce DOM subsamples with different molecular compositions and chemical properties. A large proportion (45 to 64%) of the initial carbon in every DOM solution sorbed to the Fe(III)-montmorillonite. However, when the compositions of the initial solutions were compared to the sorbed organic matter, the computed changes in composition were lower (10 to 32%). In fact, non-selective sorption was more important than selective sorption in every sample, except for the hydrophilic neutral (HiN) fraction, where high nitrogen content and acidic conditions appeared to enhance sorptive fractionation. The results from this study demonstrate that the importance of sorptive fractionation varies with DOM composition and other factors, and that non-selective sorption can contribute substantially to the formation of mineral-organic associations.

Research paper thumbnail of Organic coating on biochar explains its nutrient retention and stimulation of soil fertility

Nature communications, Oct 20, 2017

Amending soil with biochar (pyrolized biomass) is suggested as a globally applicable approach to ... more Amending soil with biochar (pyrolized biomass) is suggested as a globally applicable approach to address climate change and soil degradation by carbon sequestration, reducing soil-borne greenhouse-gas emissions and increasing soil nutrient retention. Biochar was shown to promote plant growth, especially when combined with nutrient-rich organic matter, e.g., co-composted biochar. Plant growth promotion was explained by slow release of nutrients, although a mechanistic understanding of nutrient storage in biochar is missing. Here we identify a complex, nutrient-rich organic coating on co-composted biochar that covers the outer and inner (pore) surfaces of biochar particles using high-resolution spectro(micro)scopy and mass spectrometry. Fast field cycling nuclear magnetic resonance, electrochemical analysis and gas adsorption demonstrated that this coating adds hydrophilicity, redox-active moieties, and additional mesoporosity, which strengthens biochar-water interactions and thus enh...

Research paper thumbnail of Temporal characterization and statistical analysis of flowback and produced waters and their potential for reuse

Temporal characterization and statistical analysis of flowback and produced waters and their potential for reuse

The Science of the total environment, Jan 17, 2017

Hydraulic fracturing (HF) has allowed for the utilization of previously unattainable shale oil an... more Hydraulic fracturing (HF) has allowed for the utilization of previously unattainable shale oil and gas (O&G) resources. After HF is complete, the waters used to increase the facies' permeability return uphole as wastewaters. When these waters return to the surface, they are characterized by complex organic and inorganic chemistry, and can pose a health risk if not handled correctly. Therefore, these waters must be treated or disposed of properly. However, the variability of these waters' chemical composition over time is poorly understood and likely limits the applicability of their reuse. This study examines the water chemistry of a hydraulically fractured site in the Niobrara formation throughout the flowback period. Samples were collected every other day for the first 18days, then on a regular basis for three months. We identified HF fluid additives, including benzalkonium chlorides (BACs), alkyl ethoxylates (AEOs), and polyethylene glycols (PEGs), as well as geogenic com...

Research paper thumbnail of Natural Attenuation of Nonionic Surfactants Used in Hydraulic Fracturing Fluids: Degradation Rates, Pathways, and Mechanisms

Environmental science & technology, Jan 13, 2017

Hydraulic fracturing fluids are injected into shales to extend fracture networks that enhance oil... more Hydraulic fracturing fluids are injected into shales to extend fracture networks that enhance oil and natural gas production from unconventional reservoirs. Here we evaluated the biodegradability of three widely used nonionic polyglycol ether surfactants (alkyl ethoxylates (AEOs), nonylphenol ethoxylates (NPEOs), and polypropylene glycols (PPGs)) that function as weatherizers, emulsifiers, wetting agents, and corrosion inhibitors in injected fluids. Under anaerobic conditions, we observed complete removal of AEOs and NPEOs from solution within 3 weeks regardless of whether surfactants were part of a chemical mixture or amended as individual additives. Microbial enzymatic chain shortening was responsible for a shift in ethoxymer molecular weight distributions and the accumulation of the metabolite acetate. PPGs bioattenuated the slowest, producing sizable concentrations of acetone, an isomer of propionaldehyde. Surfactant chain shortening was coupled to an increased abundance of the ...

Research paper thumbnail of Biogenic non-crystalline U(IV) revealed as major component in uranium ore deposits

Nature Communications

Historically, it is believed that crystalline uraninite, produced via the abiotic reduction of he... more Historically, it is believed that crystalline uraninite, produced via the abiotic reduction of hexavalent uranium (U (VI)) is the dominant reduced U species formed in low-temperature uranium roll-front ore deposits. Here we show that non-crystalline U (IV) generated through biologically mediated U (VI) reduction is the predominant U (IV) species in an undisturbed U roll-front ore deposit in Wyoming, USA. Characterization of U species revealed that the majority (B58-89%) of U is bound as U (IV) to C-containing organic functional groups or inorganic carbonate, while uraninite and U (VI) represent only minor components. The uranium deposit exhibited mostly 238 U-enriched isotope signatures, consistent with largely biotic reduction of U (VI) to U (IV). This finding implies that biogenic processes are more important to uranium ore genesis than previously understood. The predominance of a relatively labile form of U (IV) also provides an opportunity for a more economical and environmentally benign mining process, as well as the design of more effective post-mining restoration strategies and human health-risk assessment.

Research paper thumbnail of Downhole Transformation of the Hydraulic Fracturing Fluid Biocide Glutaraldehyde: Implications for Flowback and Produced Water Quality

Environmental Science & Technology

Hydraulic fracturing fluid (HFF) additives are used to enhance oil and gas extraction from unconv... more Hydraulic fracturing fluid (HFF) additives are used to enhance oil and gas extraction from unconventional shale formations. Several kilometers downhole, these organic chemicals are exposed to temperatures up to 200°C, pressures above 10 MPa, high salinities, and a pH range from 5−8. Despite this, very little is known about the fate of HFF additives under these extreme conditions. Here, stainless steel reactors are used to simulate the downhole chemistry of the commonly used HFF biocide glutaraldehyde (GA). The results show that GA rapidly (t 1/2 < 1 h) autopolymerizes, forming water-soluble dimers and trimers, and eventually precipitates out at high temperatures (∼140°C) and/or alkaline pH. Interestingly, salinity was found to significantly inhibit GA transformation. Pressure and shale did not affect GA transformation and/or removal from the bulk fluid. On the basis of experimental pseudo-second-order rate constants, a kinetic model for GA downhole half-life predictions for any combination of these conditions within the limits tested was developed. These findings illustrate that the biocidal GA monomer has limited time to control microbial activity in hot and/or alkaline shales, and may return along with its aqueous transformation products to the surface via flowback and produced water in cooler, more acidic, and saline shales.

Research paper thumbnail of Complexation and Redox Buffering of Iron(II) by Dissolved Organic Matter

Environmental Science & Technology

Iron (Fe) bioavailability depends upon its solubility and oxidation state, which are strongly inf... more Iron (Fe) bioavailability depends upon its solubility and oxidation state, which are strongly influenced by complexation with natural organic matter (NOM). Despite observations of Fe(II)-NOM associations under conditions favorable for Fe oxidation, the molecular mechanisms by which NOM influences Fe(II) oxidation remain poorly understood. In this study, we used X-ray absorption spectroscopy to determine the coordination environment of Fe(II) associated with NOM (as-received and chemically reduced) at pH 7, and investigated the effect of NOM complexation on Fe(II) redox stability. Linear combination fitting of extended X-ray absorption fine structure (EXAFS) data using reference organic ligands demonstrated that Fe(II) was complexed primarily by carboxyl functional groups in reduced NOM. Functional groups more likely to preserve Fe(II) represent much smaller fractions of NOM-bound Fe(II). Fe(II) added to anoxic solutions of as-received NOM oxidized to Fe(III) and remained organically complexed. Iron oxidation experiments revealed that the presence of reduced NOM limited Fe(II) oxidation, with over 50% of initial Fe(II) remaining after 4 h. These results suggest reduced NOM may preserve Fe(II) by functioning both as redox buffer and complexant, which may help explain the presence of Fe(II) in oxic circumneutral waters.

Research paper thumbnail of Spills of Hydraulic Fracturing Chemicals on Agricultural Topsoil: Biodegradation, Sorption, and Co-contaminant Interactions

Environmental Science & Technology

Hydraulic fracturing frequently occurs on agricultural land. Yet the extent of sorption, transfor... more Hydraulic fracturing frequently occurs on agricultural land. Yet the extent of sorption, transformation, and interactions among the numerous organic frac fluid and oil and gas wastewater constituents upon environmental release is hardly known. Thus, this study aims to advance our current understanding of processes that control the environmental fate and toxicity of commonly used hydraulic fracturing chemicals. Poly(ethylene glycol) surfactants were completely biodegraded in agricultural topsoil within 42−71 days, but their transformation was impeded in the presence of the biocide glutaraldehyde and was completely inhibited by salt at concentrations typical for oil and gas wastewater. At the same time, aqueous glutaraldehyde concentrations decreased due to sorption to soil and were completely biodegraded within 33−57 days. While no aqueous removal of polyacrylamide friction reducer was observed over a period of 6 months, it cross-linked with glutaraldehyde, further lowering the biocide's aqueous concentration. These findings highlight the necessity to consider co-contaminant effects when we evaluate the risk of frac fluid additives and oil and gas wastewater constituents in agricultural soils in order to fully understand their human health impacts, likelihood for crop uptake, and potential for groundwater contamination.

Research paper thumbnail of Watershed-Scale Impacts from Surface Water Disposal of Oil and Gas Wastewater in Western Pennsylvania

Environmental science & technology, 2017

Combining horizontal drilling with high volume hydraulic fracturing has increased extraction of h... more Combining horizontal drilling with high volume hydraulic fracturing has increased extraction of hydrocarbons from low-permeability oil and gas (O&G) formations across the United States; accompanied by increased wastewater production. Surface water discharges of O&G wastewater by centralized waste treatment (CWT) plants pose risks to aquatic and human health. We evaluated the impact of surface water disposal of O&G wastewater from CWT plants upstream of the Conemaugh River Lake (dam controlled reservoir) in western Pennsylvania. Regulatory compliance data were collected to calculate annual contaminant loads (Ba, Cl, total dissolved solids (TDS)) to document historical industrial activity. In this study, two CWT plants 10 and 19 km upstream of a reservoir left geochemical signatures in sediments and porewaters corresponding to peak industrial activity that occurred 5 to 10 years earlier. Sediment cores were sectioned for the collection of paired samples of sediment and porewater, and ...

Research paper thumbnail of Use of reversed-phase high-performance liquid chromatography-diode array detection for complete separation of 2,4,6-trinitrotoluene metabolites and EPA Method 8330 explosives: influence of temperature and an ion-pair reagent

Use of reversed-phase high-performance liquid chromatography-diode array detection for complete separation of 2,4,6-trinitrotoluene metabolites and EPA Method 8330 explosives: influence of temperature and an ion-pair reagent

Journal of Chromatography a, Jan 2, 2004

Research paper thumbnail of Impact of Ferrihydrite and Anthraquinone-2,G-Disulfonate on the Reductive Transformation of 2,4,6-Trinitrotoluene by a Gram-Positive Fermenting Bacterium

Impact of Ferrihydrite and Anthraquinone-2,G-Disulfonate on the Reductive Transformation of 2,4,6-Trinitrotoluene by a Gram-Positive Fermenting Bacterium

Environmental Science Technology, 2005

Research paper thumbnail of Troyer SI 2014

Research paper thumbnail of Hydraulic fracturing surfactants

Hydraulic fracturing surfactants

Research paper thumbnail of Porsch Sup 2014

Research paper thumbnail of Soft X-ray spectromicroscopy study of chemical heterogeneities in iron precipitates formed at or near bacterial cells