Function reference (original) (raw)

Main Functions The most important functions to analyze mass spectrometry data with lots of missing values
median_normalization() Column wise median normalization of the data matrix
proDA() Main function to fit the probabilistic dropout model
dist_approx() dist_approx() dist_approx() Distance method for 'proDAFit' object
test_diff() result_names() Identify differentially abundant proteins
Accessor methods Methods to access values of the fit
abundances() design() hyper_parameters() feature_parameters() coefficients() coefficient_variance_matrices() reference_level() convergence() Get different features and elements of the 'proDAFit' object
.DollarNames() `$`() `$<-`() Fluent use of accessor methods
Quick start functions
pd_row_t_test() pd_row_f_test() Row-wise tests of difference using the probabilistic dropout model
generate_synthetic_data() Generate a dataset according to the probabilistic dropout model
Low-level statistics functions
pd_lm() Fit a single linear probabilistic dropout model
invprobit() Inverse probit function
predict() Predict the parameters or values of additional proteins
Utility function
mply_dbl() msply_dbl() apply function that always returns a numeric matrix
Class and Package Information
proDAFit-class proDA Class Definition
proDA_package proDA: Identify differentially abundant proteins in label-free mass spectrometry
Generic functions Function definitions for S4 Generics
abundances() Get the abundance matrix
coefficients() Get the coefficients
coefficient_variance_matrices() Get the coefficients
convergence() Get the convergence information
dist_approx() Calculate an approximate distance for 'object'
feature_parameters() Get the feature parameters
hyper_parameters() Get the hyper parameters
reference_level() Get the reference level
result_names() Get the result_names
All functions
abundances() Get the abundance matrix
abundances() design() hyper_parameters() feature_parameters() coefficients() coefficient_variance_matrices() reference_level() convergence() Get different features and elements of the 'proDAFit' object
.DollarNames() `$`() `$<-`() Fluent use of accessor methods
coefficients() Get the coefficients
coefficient_variance_matrices() Get the coefficients
convergence() Get the convergence information
dist_approx() dist_approx() dist_approx() Distance method for 'proDAFit' object
dist_approx() Calculate an approximate distance for 'object'
feature_parameters() Get the feature parameters
generate_synthetic_data() Generate a dataset according to the probabilistic dropout model
hyper_parameters() Get the hyper parameters
invprobit() Inverse probit function
median_normalization() Column wise median normalization of the data matrix
mply_dbl() msply_dbl() apply function that always returns a numeric matrix
pd_lm() Fit a single linear probabilistic dropout model
pd_row_t_test() pd_row_f_test() Row-wise tests of difference using the probabilistic dropout model
predict() Predict the parameters or values of additional proteins
proDA() Main function to fit the probabilistic dropout model
proDAFit-class proDA Class Definition
proDA_package proDA: Identify differentially abundant proteins in label-free mass spectrometry
reference_level() Get the reference level
test_diff() result_names() Identify differentially abundant proteins