Fatemeh Shahbazi | University of Manchester (original) (raw)

Uploads

Papers by Fatemeh Shahbazi

Research paper thumbnail of The Effect of Biomaterial Matrix Design on Tissue Regeneration of Broken Nerve-Cells in Vivo

Research paper thumbnail of Numerical Simulation of Langmuir-Hinshelwood Mechanism for Heterogeneous Biosensors in Microfluidic Channel

8th European Medical and Biological Engineering Conference

Research paper thumbnail of Flow Control Techniques for Enhancing the Bio-Recognition Performance of Microfluidic-Integrated Biosensors

Applied Sciences

Biosensors are favored devices for the fast and cost-effective detection of biological species wi... more Biosensors are favored devices for the fast and cost-effective detection of biological species without the need for laboratories. Microfluidic integration with biosensors has advanced their capabilities in selectivity, sensitivity, controllability, and conducting multiple binding assays simultaneously. Despite all the improvements, their design and fabrication are still challenging and time-consuming. The current study aims to enhance microfluidic-integrated biosensors’ performance. Three different functional designs are presented with both active (with the help of electroosmotic flow) and passive (geometry optimization) methods. For validation and further studies, these solutions are applied to an experimental setup for DNA hybridization. The numerical results for the original case have been validated with the experimental data from previous literature. Convection, diffusion, migration, and hybridization of DNA strands during the hybridization process have been simulated with finit...

Research paper thumbnail of A computational simulation platform for designing real-time monitoring systems with application to COVID-19

Biosensors and Bioelectronics

Research paper thumbnail of A computational simulation platform for designing real-time monitoring systems with application to COVID-19

Biosensors & Bioelectronics, 2020

While developing an effective vaccine can take months up to years, detection of infected patients... more While developing an effective vaccine can take months up to years, detection of infected patients seems like one of the best ideas for controlling the situation. The role of biosensors in containing highly pathogenic viruses, saving lives and economy is evident. A new competitive numerical platform specifically for designing microfluidic-integrated biosensors is developed and presented in this work. Properties of the biosensor, sample, buffer fluid and even the microfluidic channel can be modified in this model. This feature provides the scientific community with the ability to design a specific biosensor for requested point-of-care (POC) applications. First, the validation of the presented numerical platform against experimental data and then results and discussion, highlighting the important role of the design parameters on the performance of the biosensor is presented. For the latter, the baseline case has been set on the previous studies on the biosensors suitable for SARS-CoV, ...

Research paper thumbnail of A computational simulation platform for designing real-time monitoring systems with application to COVID-19

Biosensors & Bioelectronics, 2021

While developing an effective vaccine can take months up to years, detection of infected patients... more While developing an effective vaccine can take months up to years, detection of infected patients seems like one of the best ideas for controlling the situation. The role of biosensors in containing highly pathogenic viruses, saving lives and economy is evident. A new competitive numerical platform specifically for designing microfluidic-integrated biosensors is developed and presented in this work. Properties of the biosensor, sample, buffer fluid and even the microfluidic channel can be modified in this model. This feature provides the scientific community with the ability to design a specific biosensor for requested point-of-care (POC) applications. First, the validation of the presented numerical platform against experimental data and then results and discussion, highlighting the important role of the design parameters on the performance of the biosensor is presented. For the latter, the baseline case has been set on the previous studies on the biosensors suitable for SARS-CoV, which has the highest similarity to the 2019 nCoV. Subsequently, the effects of concentration of the targeted molecules in the sample, installation position and properties of the biosensor on its performance were investigated in 11 case studies. The presented numerical framework provides an insight into understanding of the virus reaction in the design process of the biosensor and enhances our preparation for any future outbreaks. Furthermore, the integration of biosensors with different devices for accelerating the process of defeating the pandemic is proposed.

Research paper thumbnail of Flow Control Techniques for Enhancing the Bio-Recognition Performance of Microfluidic-Integrated Biosensors

Applied Sciences, 2021

Biosensors are favored devices for the fast and cost-effective detection of biological species wi... more Biosensors are favored devices for the fast and cost-effective detection of biological species without the need for laboratories. Microfluidic integration with biosensors has advanced their capabilities in selectivity, sensitivity, controllability, and conducting multiple binding assays simultaneously. Despite all the improvements, their design and fabrication are still challenging and time-consuming. The current study aims to enhance microfluidic-integrated biosensors’ performance. Three different functional designs are presented with both active (with the help of electroosmotic flow) and passive (geometry optimization) methods. For validation and further studies, these solutions are applied to an experimental setup for DNA hybridization. The numerical results for the original case have been validated with the experimental data from previous literature. Convection, diffusion, migration, and hybridization of DNA strands during the hybridization process have been simulated with finite element method (FEM) in 3D. Based on the results, increasing the velocity on top of the functionalized surface, by reducing the thickness of the microchamber in that area, would increase the speed of surface coverage by up to 62%. An active flow control with the help of electric field would increase this speed by 32%. In addition, other essential parameters in the fabrication of the microchamber, such as changes in pressure and bulk concentration, have been studied. The suggested designs are simple, applicable and cost-effective, and would not add extra challenges to the fabrication process. Overall, the effect of the geometry of the microchamber on the time and effectiveness of biosensors is inevitable. More studies on the geometry optimization of the microchamber and position of the electrodes using machine learning methods would be beneficial in future works.

Research paper thumbnail of The Effect of Biomaterial Matrix Design on Tissue Regeneration of Broken Nerve-Cells in Vivo

Research paper thumbnail of Numerical Simulation of Langmuir-Hinshelwood Mechanism for Heterogeneous Biosensors in Microfluidic Channel

8th European Medical and Biological Engineering Conference

Research paper thumbnail of Flow Control Techniques for Enhancing the Bio-Recognition Performance of Microfluidic-Integrated Biosensors

Applied Sciences

Biosensors are favored devices for the fast and cost-effective detection of biological species wi... more Biosensors are favored devices for the fast and cost-effective detection of biological species without the need for laboratories. Microfluidic integration with biosensors has advanced their capabilities in selectivity, sensitivity, controllability, and conducting multiple binding assays simultaneously. Despite all the improvements, their design and fabrication are still challenging and time-consuming. The current study aims to enhance microfluidic-integrated biosensors’ performance. Three different functional designs are presented with both active (with the help of electroosmotic flow) and passive (geometry optimization) methods. For validation and further studies, these solutions are applied to an experimental setup for DNA hybridization. The numerical results for the original case have been validated with the experimental data from previous literature. Convection, diffusion, migration, and hybridization of DNA strands during the hybridization process have been simulated with finit...

Research paper thumbnail of A computational simulation platform for designing real-time monitoring systems with application to COVID-19

Biosensors and Bioelectronics

Research paper thumbnail of A computational simulation platform for designing real-time monitoring systems with application to COVID-19

Biosensors & Bioelectronics, 2020

While developing an effective vaccine can take months up to years, detection of infected patients... more While developing an effective vaccine can take months up to years, detection of infected patients seems like one of the best ideas for controlling the situation. The role of biosensors in containing highly pathogenic viruses, saving lives and economy is evident. A new competitive numerical platform specifically for designing microfluidic-integrated biosensors is developed and presented in this work. Properties of the biosensor, sample, buffer fluid and even the microfluidic channel can be modified in this model. This feature provides the scientific community with the ability to design a specific biosensor for requested point-of-care (POC) applications. First, the validation of the presented numerical platform against experimental data and then results and discussion, highlighting the important role of the design parameters on the performance of the biosensor is presented. For the latter, the baseline case has been set on the previous studies on the biosensors suitable for SARS-CoV, ...

Research paper thumbnail of A computational simulation platform for designing real-time monitoring systems with application to COVID-19

Biosensors & Bioelectronics, 2021

While developing an effective vaccine can take months up to years, detection of infected patients... more While developing an effective vaccine can take months up to years, detection of infected patients seems like one of the best ideas for controlling the situation. The role of biosensors in containing highly pathogenic viruses, saving lives and economy is evident. A new competitive numerical platform specifically for designing microfluidic-integrated biosensors is developed and presented in this work. Properties of the biosensor, sample, buffer fluid and even the microfluidic channel can be modified in this model. This feature provides the scientific community with the ability to design a specific biosensor for requested point-of-care (POC) applications. First, the validation of the presented numerical platform against experimental data and then results and discussion, highlighting the important role of the design parameters on the performance of the biosensor is presented. For the latter, the baseline case has been set on the previous studies on the biosensors suitable for SARS-CoV, which has the highest similarity to the 2019 nCoV. Subsequently, the effects of concentration of the targeted molecules in the sample, installation position and properties of the biosensor on its performance were investigated in 11 case studies. The presented numerical framework provides an insight into understanding of the virus reaction in the design process of the biosensor and enhances our preparation for any future outbreaks. Furthermore, the integration of biosensors with different devices for accelerating the process of defeating the pandemic is proposed.

Research paper thumbnail of Flow Control Techniques for Enhancing the Bio-Recognition Performance of Microfluidic-Integrated Biosensors

Applied Sciences, 2021

Biosensors are favored devices for the fast and cost-effective detection of biological species wi... more Biosensors are favored devices for the fast and cost-effective detection of biological species without the need for laboratories. Microfluidic integration with biosensors has advanced their capabilities in selectivity, sensitivity, controllability, and conducting multiple binding assays simultaneously. Despite all the improvements, their design and fabrication are still challenging and time-consuming. The current study aims to enhance microfluidic-integrated biosensors’ performance. Three different functional designs are presented with both active (with the help of electroosmotic flow) and passive (geometry optimization) methods. For validation and further studies, these solutions are applied to an experimental setup for DNA hybridization. The numerical results for the original case have been validated with the experimental data from previous literature. Convection, diffusion, migration, and hybridization of DNA strands during the hybridization process have been simulated with finite element method (FEM) in 3D. Based on the results, increasing the velocity on top of the functionalized surface, by reducing the thickness of the microchamber in that area, would increase the speed of surface coverage by up to 62%. An active flow control with the help of electric field would increase this speed by 32%. In addition, other essential parameters in the fabrication of the microchamber, such as changes in pressure and bulk concentration, have been studied. The suggested designs are simple, applicable and cost-effective, and would not add extra challenges to the fabrication process. Overall, the effect of the geometry of the microchamber on the time and effectiveness of biosensors is inevitable. More studies on the geometry optimization of the microchamber and position of the electrodes using machine learning methods would be beneficial in future works.