Timo Rantalainen | Deakin University (original) (raw)

Papers by Timo Rantalainen

Research paper thumbnail of Effects of bone-specific physical activity, gender and maturity on tibial cross-sectional bone material distribution: a cross-sectional pQCT comparison of children and young adults aged 5-29years

Bone, 2015

Growth is the opportune time to modify bone accrual. While bone adaptation is known to be depende... more Growth is the opportune time to modify bone accrual. While bone adaptation is known to be dependent on local loading and consequent deformations (strain) of bone, little is known about the effects of sex, and bone-specific physical activity on location-specific cross-sectional bone geometry during growth. To provide more insight we examined bone traits at different locations around tibial cross sections, and along the tibia between individuals who vary in terms of physical activity exposure, sex, and pubertal status. Data from 304 individuals aged 5-29years (172 males, 132 females) were examined. Peripheral quantitative computed tomography (pQCT) was applied at 4%, 14%, 38%, and 66% of tibial length. Maturity was established by estimating age at peak height velocity (APHV). Loading history was quantified with the bone-specific physical activity questionnaire (BPAQ). Comparisons, adjusted for height, weight and age were made between sex, maturity, and BPAQ tertile groups. Few to no d...

Research paper thumbnail of Age-related muscle activation profiles and joint stiffness regulation in repetitive hopping

Journal of Electromyography and Kinesiology, 2011

Research paper thumbnail of Innervation zone shift at different levels of isometric contraction in the biceps brachii muscle

Journal of Electromyography and Kinesiology, 2009

Experiments were carried out to examine whether innervation zone (IZ) location remains stable at ... more Experiments were carried out to examine whether innervation zone (IZ) location remains stable at different levels of isometric contraction in the biceps brachii muscle (BB), and to determine how the proximity of the IZ affects common surface electromyography (sEMG) parameters. Twelve subjects performed maximal (MVC) and submaximal voluntary isometric contractions at 10%, 20%, 30%, 40%, 50% and 75% of MVC. sEMG signals were recorded with a 13 rows x 5 columns grid of electrodes from the short head of BB. The IZ shifted in the proximal direction by up to 2.4 cm, depending upon the subject and electrode column. The mean shift of all the columns was 0.6+/-0.4 cm (10% vs. 100% MVC, P<0.001). This shift biased the average values of mean frequency (+21.8+/-9.9 Hz, P<0.001), root mean square (-0.16+/-0.15 mV, P<0.05) and conduction velocity (-1.15+/-0.93 m/s, P<0.01) in the channels immediately proximal to the IZ. The shift in IZ could be explained by shortening of the muscle fibers, and thus lengthening of the (distal) tendon due to increasing force. These results underline the importance of individual investigation of IZ locations before the placement of sEMG electrodes, even in isometric contractions.

Research paper thumbnail of Seventy-year-old habitual volleyball players have larger tibial cross-sectional area and may be differentiated from their age-matched peers by the osteogenic index in dynamic performance

European Journal of Applied Physiology, 2010

The osteogenicity of a given exercise may be estimated by calculating an osteogenic index (OI) co... more The osteogenicity of a given exercise may be estimated by calculating an osteogenic index (OI) consisting of magnitude and rate of strain. Volleyball involves repetitive jumping and requires high power output and thus may be expected to be beneficial to bone and performance. The purpose of the present study was to examine if habitual volleyball playing is reflected in OI. Ten elderly habitual volleyball players [age 69.9 (SD 4.4) years] and ten matched controls volunteered [age 69.7 (4.2) years] as subjects. Distal tibia (d), tibial mid-shaft (50) and femoral neck (FN) bone characteristics were measured using pQCT and DXA. To estimate skeletal rigidity, cross-sectional area (ToA50), and compressive (BSId) and bending strength indices (SSImax50) were calculated. Maximal performance was assessed with eccentric ankle plantar flexion, isometric leg press and countermovement jump (CMJ). A fast Fourier transform (FFT) was calculated from the acceleration of the center of mass during the CMJ. Maximal acceleration (MAG) and mean magnitude frequency (MMF) were selected to represent the constituents of OI. OI was calculated as the sum of the products of magnitudes and corresponding frequencies. Volleyball players had 7% larger ToA50 and 37% higher power in CMJ, 15% higher MAG and 36% higher OI (P ≤ 0.047) than the matched controls. No difference was observed in leg press, plantar flexion or the MMF (P ≥ 0.646). In conclusion, habitual volleyball players may be differentiated from their matched peers by their dynamic jumping performance, and the differences are reflected in the magnitude but not rate of loading.

Research paper thumbnail of Cross-sectional geometry of weight-bearing tibia in female athletes subjected to different exercise loadings

Osteoporosis International, 2010

Summary The association of long-term sport-specific exercise loading with cross-sectional geometr... more Summary The association of long-term sport-specific exercise loading with cross-sectional geometry of the weight-bearing tibia was evaluated among 204 female athletes representing five different exercise loadings and 50 referents. All exercises involving ground impacts (e.g., endurance running, ball games, jumping) were associated with thicker cortex at the distal and diaphyseal sites of the tibia and also with large diaphyseal cross-section, whereas the high-magnitude (powerlifting) and non-impact (swimming) exercises were not. Introduction Bones adapt to the specific loading to which they are habitually subjected. In this cross-sectional study, the association of long-term sport-specific exercise loading with the geometry of the weight-bearing tibia was evaluated among premenopausal female athletes representing 11 different sports. Methods A total of 204 athletes were divided into five exercise loading groups, and the respective peripheral quantitative computed tomographic data were compared to data obtained from 50 physically active, non-athletic referents. Analysis of covariance was used to estimate the between-group differences. Results At the distal tibia, the high-impact, odd-impact, and repetitive low-impact exercise loading groups had ~30% to 50% (p < 0.05) greater cortical area (CoA) than the referents. At the tibial shaft, these three impact groups had ~15% to 20% (p < 0.05) greater total area (ToA) and ~15% to 30% (p < 0.05) greater CoA. By contrast, both the high-magnitude and repetitive non-impact groups had similar ToA and CoA values to the reference group at both tibial sites. Conclusions High-impact, odd-impact, and repetitive low-impact exercise loadings were associated with thicker cortex at the distal tibia. At the tibial shaft, impact loading was not only associated with thicker cortex, but also a larger cross-sectional area. High-magnitude exercise loading did not show such associations at either site but was comparable to repetitive non-impact loading and reference data. Collectively, the relevance of high strain rate together with moderate-to-high strain magnitude as major determinants of osteogenic loading of the weight-bearing tibia is implicated.

Research paper thumbnail of Excitability at the Motoneuron Pool and Motor Cortex Is Specifically Modulated in Lengthening Compared to Isometric Contractions

Journal of Neurophysiology, 2009

Research paper thumbnail of A full body musculoskeletal model based on flexible multibody simulation approach utilised in bone strain analysis during human locomotion

Computer Methods in Biomechanics and Biomedical Engineering, 2011

Load-induced strains applied to bone can stimulate its development and adaptation. In order to qu... more Load-induced strains applied to bone can stimulate its development and adaptation. In order to quantify the incident strains within the skeleton, in vivo implementation of strain gauges on the surfaces of bone is typically used. However, in vivo strain measurements require invasive methodology that is challenging and limited to certain regions of superficial bones only such as the anterior surface of the tibia. Based on our previous study [Al Nazer et al. (2008) J Biomech. 41:1036–1043], an alternative numerical approach to analyse in vivo strains based on the flexible multibody simulation approach was proposed. The purpose of this study was to extend the idea of using the flexible multibody approach in the analysis of bone strains during physical activity through integrating the magnetic resonance imaging (MRI) technique within the framework. In order to investigate the reliability and validity of the proposed approach, a three-dimensional full body musculoskeletal model with a flexible tibia was used as a demonstration example. The model was used in a forward dynamics simulation in order to predict the tibial strains during walking on a level exercise. The flexible tibial model was developed using the actual geometry of human tibia, which was obtained from three-dimensional reconstruction of MRI. Motion capture data obtained from walking at constant velocity were used to drive the model during the inverse dynamics simulation in order to teach the muscles to reproduce the motion in the forward dynamics simulation. Based on the agreement between the literature-based in vivo strain measurements and the simulated strain results, it can be concluded that the flexible multibody approach enables reasonable predictions of bone strain in response to dynamic loading. The information obtained from the present approach can be useful in clinical applications including devising exercises to prevent bone fragility or to accelerate fracture healing.

Research paper thumbnail of Maximal voluntary isokinetic knee flexion torque is associated with femoral shaft bone strength indices in knee replacement patients

Research paper thumbnail of Direction-Specific Diaphyseal Geometry and Mineral Mass Distribution of Tibia and Fibula: A pQCT Study of Female Athletes Representing Different Exercise Loading Types

Calcified Tissue International, 2010

Bones adapt to prevalent loading, which comprises mainly forces caused by muscle contractions. Th... more Bones adapt to prevalent loading, which comprises mainly forces caused by muscle contractions. Therefore, we hypothesized that similar associations would be observed between neuromuscular performance and rigidity of bones located in the same body segment. These associations were assessed among 221 premenopausal women representing athletes in high-impact, odd-impact, high-magnitude, repetitive low-impact, and repetitive nonimpact sports and physically active referents aged 17–40 years. The whole group mean age and body mass were 23 (5) and 63 (9) kg, respectively. Bone cross sections at the tibial and fibular mid-diaphysis were assessed with peripheral quantitative computed tomography (pQCT). Density-weighted polar section modulus (SSI) and minimal and maximal cross-sectional moments of inertia (Imin, Imax) were analyzed. Bone morphology was described as the Imax/Imin ratio. Neuromuscular performance was assessed by maximal power during countermovement jump (CMJ). Tibial SSI was 31% higher in the high-impact, 19% in the odd-impact, and 30% in the repetitive low-impact groups compared with the reference group (P < 0.005). Only the high-impact group differed from the referents in fibular SSI (17%, P < 0.005). Tibial morphology differed between groups (P = 0.001), but fibular morphology did not (P = 0.247). The bone-by-group interaction was highly significant (P < 0.001). After controlling for height, weight, and age, the CMJ peak power correlated moderately with tibial SSI (r = 0.31, P < 0.001) but not with fibular SSI (r = 0.069, P = 0.313). In conclusion, observed differences in the association between neuromuscular performance and tibial and fibular traits suggest that the tibia and fibula experience different loading environments despite their anatomical vicinity.

Research paper thumbnail of Exercise loading and cortical bone distribution at the tibial shaft

Research paper thumbnail of Achilles Tendon Responses After The Short Term Hopping Training: 2515

Medicine and Science in Sports and Exercise, 2008

Research paper thumbnail of Three-month bilateral hopping intervention is ineffective in initiating bone biomarker response in healthy elderly men

European Journal of Applied Physiology

In animal studies, bone adaptation has been initiated successfully without the transient force sp... more In animal studies, bone adaptation has been initiated successfully without the transient force spike associated with high impact exercises. Consequently, a 12-week bilateral hopping on the balls of the feet intervention was conducted. 25 elderly men (age 72(SD4) years, height 171(6) cm, weight 75(9) kg) were randomly assigned into exercise and control groups. Ten subjects in each group completed the study. Carboxyterminal propeptide of type I collagen (CICP), bone-specific alkaline phosphatase (bALP) and carboxyterminal telopeptide of type I collagen (CTx) were measured from venous blood samples at baseline, at 2 weeks and at the end of the intervention. Maximal ground reaction force (GRF), osteogenic index (OI) and jump height (JH) were determined from bilateral hopping test and balance was assessed with velocity of center of pressure (COPvelocity) while standing on the preferred leg with eyes open. The intervention consisted of 5–7 sets of 10 s timed bilateral hopping exercise at 75–90% intensity three times/week. There was no significant group × time interaction for GRF, OI and JH (P = 0.065). GRF (11% change from baseline vs. 4%), OI (15 vs. 6%) and COPvelocity (−10 vs. −1%) were not influenced by the intervention (P > 0.170), while the control group improved JH (P = 0.031) (2 vs. 18%). For the biomarkers, no effect was observed in MANOVA (P = 0.536) or in univariate analyses (P = 0.082 to P = 0.820) (CICP −2 vs. −3%, CTx 8 vs. −12%, bALP 0 vs. −3.7%). Allowing transient impact force spikes may be necessary to initiate a bone response in elderly men as the intervention was ineffective.

Research paper thumbnail of Analysis of dynamic strains in tibia during human locomotion based on flexible multibody approach integrated with magnetic resonance imaging technique

Multibody System Dynamics, 2008

Bone is known to adapt to the prevalent strain environment while the variation in strains, e.g., ... more Bone is known to adapt to the prevalent strain environment while the variation in strains, e.g., due to mechanical loading, modulates bone remodeling, and modeling. Dynamic strains rather than static strains provide the primary stimulus of bone functional adaptation. The finite element method can be generally used for estimating bone strains, but it may be limited to the static analysis of bone strains since the dynamic analysis requires expensive computation. Direct in vivo strain measurement, in turn, is an invasive procedure, limited to certain superficial bone sites, and requires surgical implementation of strain gauges and thus involves risks (e.g., infection). Therefore, to overcome difficulties associated with the finite element method and the in vivo strain measurements, the flexible multibody simulation approach has been recently introduced as a feasible method to estimate dynamic bone strains during physical activity. The purpose of the present study is to further strengthen the idea of using the flexible multibody approach for the analysis of dynamic bone strains. Besides discussing the background theory, magnetic resonance imaging is integrated into the flexible multibody approach framework so that the actual bone geometry could be better accounted for and the accuracy of prediction improved.

Research paper thumbnail of Neuromuscular performance and bone structural characteristics in young healthy men and women

European Journal of Applied Physiology, 2008

Muscle mass and strength have been shown to be important factors in bone strength. Low muscular f... more Muscle mass and strength have been shown to be important factors in bone strength. Low muscular force predisposes to falling especially among elderly. Regular exercise helps to prevent falls and resulting bone fractures. Better understanding of muscle function and its importance on bone properties may thus add information to fracture prevention. Therefore the purpose of this study was to examine the relationship between bone strength and muscular force production. Twenty-young men [24 (2) years] and 20 [24 (3) years] women served as subjects. Bone compressive (BSId) and bending strength indices (50 Imax) were measured with peripheral quantitative computed tomography (pQCT) at tibial mid-shaft and at distal tibia. Ankle plantarflexor muscle volume (MV) was estimated from muscle thickness measured with ultrasonography. Neuromuscular performance was evaluated from the measurements of maximal ground reaction force (GRF) in bilateral jumping and of eccentric maximal voluntary ankle plantarflexor torque (MVC). Specific tension (ST) of the plantarflexors was calculated by dividing the MVC with the muscle volume. Activation level (AL) was measured with superimposed twitch method. Distal tibia BSId and tibial mid-shaft 50 Imax correlated positively with GRF, MVC and MV in men (r = 0.45–0.67, P < 0.05). Tibial mid-shaft 50 Imax and neuromuscular performance variables were correlated in women (r = 0.46–0.59, P < 0.05), whereas no correlation was seen in distal tibia. In the regression analysis, MV and ST could explain 64% of the variance in tibial mid-shaft bone strength and 41% of the variation in distal tibia bone strength. The study emphasizes that tibial strength is related to maximal neuromuscular performance. In addition, tibial mid-shaft seems to be more dependent on the neuromuscular performance, than distal tibia. In young adults, the association between bone adaptation and neuromuscular performance seems to be moderate and also site and loading specific.

Research paper thumbnail of Short-term bone biochemical response to a single bout of high-impact exercise

Research paper thumbnail of Neuromuscular performance and body mass as indices of bone loading in premenopausal and postmenopausal women

Bone, 2010

The strong association between body mass and skeletal robusticity has been attributed to increasi... more The strong association between body mass and skeletal robusticity has been attributed to increasing skeletal loading with increasing mass. However, it is unclear whether body mass is merely a coarse substitute for bone loading rather than a true independent predictor of bone strength. As indices of neuromuscular performance, impulse and peak power were determined from vertical ground reaction force during a maximal counter movement jump test in 221 premenopausal and 82 postmenopausal women. Bone compressive (BSI(d) g(2)/cm(4)) and bending (SSImax(mid) mm(3)) strength indices were measured with peripheral quantitative computed tomography (pQCT) at the distal ((d)) and midshaft ((mid)) sites of the tibia. A two-step forced regression model for predicting bone strength indices was constructed. Age, height and body mass were entered first, followed by impulse as an indicator of skeletal loading. The basic model explained 14% (P&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;0.001) of the variance in BSI(d) in the premenopausal group and 16% (P=0.004) in the postmenopausal group, and 32% (P&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;0.001) and 25% (P&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;0.001) of the variance in SSImax(nud) respectively. Entering impulse into the model increased the explanatory power by 9% (P&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;0.001) and 7% (P&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;0.001) for BSI(d) and by 8% (P&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;0.001) and 12% (P&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;0.001) for SSImax(mid). Furthermore, impulse replaced body mass as an independent significant factor explaining the variance in bone strength. These results indicate that neuromuscular performance should be measured and preferred over body mass in models predicting skeletal robusticity.

Research paper thumbnail of Flexible multibody simulation approach in the analysis of tibial strain during walking

Journal of Biomechanics, 2008

Research paper thumbnail of Bone rigidity to neuromuscular performance ratio in young and elderly men

Research paper thumbnail of Effect of innervation zones in estimating biceps brachii force–EMG relationship during isometric contraction

Journal of Electromyography and Kinesiology

Research paper thumbnail of Flexible multibody approach in forward dynamic simulation of locomotive strains in human skeleton with flexible lower body bones

Multibody System Dynamics, 2011

A method for bone strain estimation is examined in this article. The flexibility of a single bone... more A method for bone strain estimation is examined in this article. The flexibility of a single bone in an otherwise rigid human skeleton model has been studied previously by various authors. However, in the previous studies, the effect of the flexibility of multiple bones on the musculoskeletal model behavior was ignored. This study describes a simulation method that can be used to estimate the bone strains at both tibias and femurs of a 65-year-old Caucasian male subject. The verification of the method is performed by the comparison of the results with other studies available in literature. The results of the study show good correlation with the results of previous empirical studies. A damping effect of the flexible bones on the model is also studied in this paper.

Research paper thumbnail of Effects of bone-specific physical activity, gender and maturity on tibial cross-sectional bone material distribution: a cross-sectional pQCT comparison of children and young adults aged 5-29years

Bone, 2015

Growth is the opportune time to modify bone accrual. While bone adaptation is known to be depende... more Growth is the opportune time to modify bone accrual. While bone adaptation is known to be dependent on local loading and consequent deformations (strain) of bone, little is known about the effects of sex, and bone-specific physical activity on location-specific cross-sectional bone geometry during growth. To provide more insight we examined bone traits at different locations around tibial cross sections, and along the tibia between individuals who vary in terms of physical activity exposure, sex, and pubertal status. Data from 304 individuals aged 5-29years (172 males, 132 females) were examined. Peripheral quantitative computed tomography (pQCT) was applied at 4%, 14%, 38%, and 66% of tibial length. Maturity was established by estimating age at peak height velocity (APHV). Loading history was quantified with the bone-specific physical activity questionnaire (BPAQ). Comparisons, adjusted for height, weight and age were made between sex, maturity, and BPAQ tertile groups. Few to no d...

Research paper thumbnail of Age-related muscle activation profiles and joint stiffness regulation in repetitive hopping

Journal of Electromyography and Kinesiology, 2011

Research paper thumbnail of Innervation zone shift at different levels of isometric contraction in the biceps brachii muscle

Journal of Electromyography and Kinesiology, 2009

Experiments were carried out to examine whether innervation zone (IZ) location remains stable at ... more Experiments were carried out to examine whether innervation zone (IZ) location remains stable at different levels of isometric contraction in the biceps brachii muscle (BB), and to determine how the proximity of the IZ affects common surface electromyography (sEMG) parameters. Twelve subjects performed maximal (MVC) and submaximal voluntary isometric contractions at 10%, 20%, 30%, 40%, 50% and 75% of MVC. sEMG signals were recorded with a 13 rows x 5 columns grid of electrodes from the short head of BB. The IZ shifted in the proximal direction by up to 2.4 cm, depending upon the subject and electrode column. The mean shift of all the columns was 0.6+/-0.4 cm (10% vs. 100% MVC, P&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;0.001). This shift biased the average values of mean frequency (+21.8+/-9.9 Hz, P&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;0.001), root mean square (-0.16+/-0.15 mV, P&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;0.05) and conduction velocity (-1.15+/-0.93 m/s, P&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;0.01) in the channels immediately proximal to the IZ. The shift in IZ could be explained by shortening of the muscle fibers, and thus lengthening of the (distal) tendon due to increasing force. These results underline the importance of individual investigation of IZ locations before the placement of sEMG electrodes, even in isometric contractions.

Research paper thumbnail of Seventy-year-old habitual volleyball players have larger tibial cross-sectional area and may be differentiated from their age-matched peers by the osteogenic index in dynamic performance

European Journal of Applied Physiology, 2010

The osteogenicity of a given exercise may be estimated by calculating an osteogenic index (OI) co... more The osteogenicity of a given exercise may be estimated by calculating an osteogenic index (OI) consisting of magnitude and rate of strain. Volleyball involves repetitive jumping and requires high power output and thus may be expected to be beneficial to bone and performance. The purpose of the present study was to examine if habitual volleyball playing is reflected in OI. Ten elderly habitual volleyball players [age 69.9 (SD 4.4) years] and ten matched controls volunteered [age 69.7 (4.2) years] as subjects. Distal tibia (d), tibial mid-shaft (50) and femoral neck (FN) bone characteristics were measured using pQCT and DXA. To estimate skeletal rigidity, cross-sectional area (ToA50), and compressive (BSId) and bending strength indices (SSImax50) were calculated. Maximal performance was assessed with eccentric ankle plantar flexion, isometric leg press and countermovement jump (CMJ). A fast Fourier transform (FFT) was calculated from the acceleration of the center of mass during the CMJ. Maximal acceleration (MAG) and mean magnitude frequency (MMF) were selected to represent the constituents of OI. OI was calculated as the sum of the products of magnitudes and corresponding frequencies. Volleyball players had 7% larger ToA50 and 37% higher power in CMJ, 15% higher MAG and 36% higher OI (P ≤ 0.047) than the matched controls. No difference was observed in leg press, plantar flexion or the MMF (P ≥ 0.646). In conclusion, habitual volleyball players may be differentiated from their matched peers by their dynamic jumping performance, and the differences are reflected in the magnitude but not rate of loading.

Research paper thumbnail of Cross-sectional geometry of weight-bearing tibia in female athletes subjected to different exercise loadings

Osteoporosis International, 2010

Summary The association of long-term sport-specific exercise loading with cross-sectional geometr... more Summary The association of long-term sport-specific exercise loading with cross-sectional geometry of the weight-bearing tibia was evaluated among 204 female athletes representing five different exercise loadings and 50 referents. All exercises involving ground impacts (e.g., endurance running, ball games, jumping) were associated with thicker cortex at the distal and diaphyseal sites of the tibia and also with large diaphyseal cross-section, whereas the high-magnitude (powerlifting) and non-impact (swimming) exercises were not. Introduction Bones adapt to the specific loading to which they are habitually subjected. In this cross-sectional study, the association of long-term sport-specific exercise loading with the geometry of the weight-bearing tibia was evaluated among premenopausal female athletes representing 11 different sports. Methods A total of 204 athletes were divided into five exercise loading groups, and the respective peripheral quantitative computed tomographic data were compared to data obtained from 50 physically active, non-athletic referents. Analysis of covariance was used to estimate the between-group differences. Results At the distal tibia, the high-impact, odd-impact, and repetitive low-impact exercise loading groups had ~30% to 50% (p < 0.05) greater cortical area (CoA) than the referents. At the tibial shaft, these three impact groups had ~15% to 20% (p < 0.05) greater total area (ToA) and ~15% to 30% (p < 0.05) greater CoA. By contrast, both the high-magnitude and repetitive non-impact groups had similar ToA and CoA values to the reference group at both tibial sites. Conclusions High-impact, odd-impact, and repetitive low-impact exercise loadings were associated with thicker cortex at the distal tibia. At the tibial shaft, impact loading was not only associated with thicker cortex, but also a larger cross-sectional area. High-magnitude exercise loading did not show such associations at either site but was comparable to repetitive non-impact loading and reference data. Collectively, the relevance of high strain rate together with moderate-to-high strain magnitude as major determinants of osteogenic loading of the weight-bearing tibia is implicated.

Research paper thumbnail of Excitability at the Motoneuron Pool and Motor Cortex Is Specifically Modulated in Lengthening Compared to Isometric Contractions

Journal of Neurophysiology, 2009

Research paper thumbnail of A full body musculoskeletal model based on flexible multibody simulation approach utilised in bone strain analysis during human locomotion

Computer Methods in Biomechanics and Biomedical Engineering, 2011

Load-induced strains applied to bone can stimulate its development and adaptation. In order to qu... more Load-induced strains applied to bone can stimulate its development and adaptation. In order to quantify the incident strains within the skeleton, in vivo implementation of strain gauges on the surfaces of bone is typically used. However, in vivo strain measurements require invasive methodology that is challenging and limited to certain regions of superficial bones only such as the anterior surface of the tibia. Based on our previous study [Al Nazer et al. (2008) J Biomech. 41:1036–1043], an alternative numerical approach to analyse in vivo strains based on the flexible multibody simulation approach was proposed. The purpose of this study was to extend the idea of using the flexible multibody approach in the analysis of bone strains during physical activity through integrating the magnetic resonance imaging (MRI) technique within the framework. In order to investigate the reliability and validity of the proposed approach, a three-dimensional full body musculoskeletal model with a flexible tibia was used as a demonstration example. The model was used in a forward dynamics simulation in order to predict the tibial strains during walking on a level exercise. The flexible tibial model was developed using the actual geometry of human tibia, which was obtained from three-dimensional reconstruction of MRI. Motion capture data obtained from walking at constant velocity were used to drive the model during the inverse dynamics simulation in order to teach the muscles to reproduce the motion in the forward dynamics simulation. Based on the agreement between the literature-based in vivo strain measurements and the simulated strain results, it can be concluded that the flexible multibody approach enables reasonable predictions of bone strain in response to dynamic loading. The information obtained from the present approach can be useful in clinical applications including devising exercises to prevent bone fragility or to accelerate fracture healing.

Research paper thumbnail of Maximal voluntary isokinetic knee flexion torque is associated with femoral shaft bone strength indices in knee replacement patients

Research paper thumbnail of Direction-Specific Diaphyseal Geometry and Mineral Mass Distribution of Tibia and Fibula: A pQCT Study of Female Athletes Representing Different Exercise Loading Types

Calcified Tissue International, 2010

Bones adapt to prevalent loading, which comprises mainly forces caused by muscle contractions. Th... more Bones adapt to prevalent loading, which comprises mainly forces caused by muscle contractions. Therefore, we hypothesized that similar associations would be observed between neuromuscular performance and rigidity of bones located in the same body segment. These associations were assessed among 221 premenopausal women representing athletes in high-impact, odd-impact, high-magnitude, repetitive low-impact, and repetitive nonimpact sports and physically active referents aged 17–40 years. The whole group mean age and body mass were 23 (5) and 63 (9) kg, respectively. Bone cross sections at the tibial and fibular mid-diaphysis were assessed with peripheral quantitative computed tomography (pQCT). Density-weighted polar section modulus (SSI) and minimal and maximal cross-sectional moments of inertia (Imin, Imax) were analyzed. Bone morphology was described as the Imax/Imin ratio. Neuromuscular performance was assessed by maximal power during countermovement jump (CMJ). Tibial SSI was 31% higher in the high-impact, 19% in the odd-impact, and 30% in the repetitive low-impact groups compared with the reference group (P < 0.005). Only the high-impact group differed from the referents in fibular SSI (17%, P < 0.005). Tibial morphology differed between groups (P = 0.001), but fibular morphology did not (P = 0.247). The bone-by-group interaction was highly significant (P < 0.001). After controlling for height, weight, and age, the CMJ peak power correlated moderately with tibial SSI (r = 0.31, P < 0.001) but not with fibular SSI (r = 0.069, P = 0.313). In conclusion, observed differences in the association between neuromuscular performance and tibial and fibular traits suggest that the tibia and fibula experience different loading environments despite their anatomical vicinity.

Research paper thumbnail of Exercise loading and cortical bone distribution at the tibial shaft

Research paper thumbnail of Achilles Tendon Responses After The Short Term Hopping Training: 2515

Medicine and Science in Sports and Exercise, 2008

Research paper thumbnail of Three-month bilateral hopping intervention is ineffective in initiating bone biomarker response in healthy elderly men

European Journal of Applied Physiology

In animal studies, bone adaptation has been initiated successfully without the transient force sp... more In animal studies, bone adaptation has been initiated successfully without the transient force spike associated with high impact exercises. Consequently, a 12-week bilateral hopping on the balls of the feet intervention was conducted. 25 elderly men (age 72(SD4) years, height 171(6) cm, weight 75(9) kg) were randomly assigned into exercise and control groups. Ten subjects in each group completed the study. Carboxyterminal propeptide of type I collagen (CICP), bone-specific alkaline phosphatase (bALP) and carboxyterminal telopeptide of type I collagen (CTx) were measured from venous blood samples at baseline, at 2 weeks and at the end of the intervention. Maximal ground reaction force (GRF), osteogenic index (OI) and jump height (JH) were determined from bilateral hopping test and balance was assessed with velocity of center of pressure (COPvelocity) while standing on the preferred leg with eyes open. The intervention consisted of 5–7 sets of 10 s timed bilateral hopping exercise at 75–90% intensity three times/week. There was no significant group × time interaction for GRF, OI and JH (P = 0.065). GRF (11% change from baseline vs. 4%), OI (15 vs. 6%) and COPvelocity (−10 vs. −1%) were not influenced by the intervention (P > 0.170), while the control group improved JH (P = 0.031) (2 vs. 18%). For the biomarkers, no effect was observed in MANOVA (P = 0.536) or in univariate analyses (P = 0.082 to P = 0.820) (CICP −2 vs. −3%, CTx 8 vs. −12%, bALP 0 vs. −3.7%). Allowing transient impact force spikes may be necessary to initiate a bone response in elderly men as the intervention was ineffective.

Research paper thumbnail of Analysis of dynamic strains in tibia during human locomotion based on flexible multibody approach integrated with magnetic resonance imaging technique

Multibody System Dynamics, 2008

Bone is known to adapt to the prevalent strain environment while the variation in strains, e.g., ... more Bone is known to adapt to the prevalent strain environment while the variation in strains, e.g., due to mechanical loading, modulates bone remodeling, and modeling. Dynamic strains rather than static strains provide the primary stimulus of bone functional adaptation. The finite element method can be generally used for estimating bone strains, but it may be limited to the static analysis of bone strains since the dynamic analysis requires expensive computation. Direct in vivo strain measurement, in turn, is an invasive procedure, limited to certain superficial bone sites, and requires surgical implementation of strain gauges and thus involves risks (e.g., infection). Therefore, to overcome difficulties associated with the finite element method and the in vivo strain measurements, the flexible multibody simulation approach has been recently introduced as a feasible method to estimate dynamic bone strains during physical activity. The purpose of the present study is to further strengthen the idea of using the flexible multibody approach for the analysis of dynamic bone strains. Besides discussing the background theory, magnetic resonance imaging is integrated into the flexible multibody approach framework so that the actual bone geometry could be better accounted for and the accuracy of prediction improved.

Research paper thumbnail of Neuromuscular performance and bone structural characteristics in young healthy men and women

European Journal of Applied Physiology, 2008

Muscle mass and strength have been shown to be important factors in bone strength. Low muscular f... more Muscle mass and strength have been shown to be important factors in bone strength. Low muscular force predisposes to falling especially among elderly. Regular exercise helps to prevent falls and resulting bone fractures. Better understanding of muscle function and its importance on bone properties may thus add information to fracture prevention. Therefore the purpose of this study was to examine the relationship between bone strength and muscular force production. Twenty-young men [24 (2) years] and 20 [24 (3) years] women served as subjects. Bone compressive (BSId) and bending strength indices (50 Imax) were measured with peripheral quantitative computed tomography (pQCT) at tibial mid-shaft and at distal tibia. Ankle plantarflexor muscle volume (MV) was estimated from muscle thickness measured with ultrasonography. Neuromuscular performance was evaluated from the measurements of maximal ground reaction force (GRF) in bilateral jumping and of eccentric maximal voluntary ankle plantarflexor torque (MVC). Specific tension (ST) of the plantarflexors was calculated by dividing the MVC with the muscle volume. Activation level (AL) was measured with superimposed twitch method. Distal tibia BSId and tibial mid-shaft 50 Imax correlated positively with GRF, MVC and MV in men (r = 0.45–0.67, P < 0.05). Tibial mid-shaft 50 Imax and neuromuscular performance variables were correlated in women (r = 0.46–0.59, P < 0.05), whereas no correlation was seen in distal tibia. In the regression analysis, MV and ST could explain 64% of the variance in tibial mid-shaft bone strength and 41% of the variation in distal tibia bone strength. The study emphasizes that tibial strength is related to maximal neuromuscular performance. In addition, tibial mid-shaft seems to be more dependent on the neuromuscular performance, than distal tibia. In young adults, the association between bone adaptation and neuromuscular performance seems to be moderate and also site and loading specific.

Research paper thumbnail of Short-term bone biochemical response to a single bout of high-impact exercise

Research paper thumbnail of Neuromuscular performance and body mass as indices of bone loading in premenopausal and postmenopausal women

Bone, 2010

The strong association between body mass and skeletal robusticity has been attributed to increasi... more The strong association between body mass and skeletal robusticity has been attributed to increasing skeletal loading with increasing mass. However, it is unclear whether body mass is merely a coarse substitute for bone loading rather than a true independent predictor of bone strength. As indices of neuromuscular performance, impulse and peak power were determined from vertical ground reaction force during a maximal counter movement jump test in 221 premenopausal and 82 postmenopausal women. Bone compressive (BSI(d) g(2)/cm(4)) and bending (SSImax(mid) mm(3)) strength indices were measured with peripheral quantitative computed tomography (pQCT) at the distal ((d)) and midshaft ((mid)) sites of the tibia. A two-step forced regression model for predicting bone strength indices was constructed. Age, height and body mass were entered first, followed by impulse as an indicator of skeletal loading. The basic model explained 14% (P&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;0.001) of the variance in BSI(d) in the premenopausal group and 16% (P=0.004) in the postmenopausal group, and 32% (P&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;0.001) and 25% (P&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;0.001) of the variance in SSImax(nud) respectively. Entering impulse into the model increased the explanatory power by 9% (P&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;0.001) and 7% (P&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;0.001) for BSI(d) and by 8% (P&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;0.001) and 12% (P&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;0.001) for SSImax(mid). Furthermore, impulse replaced body mass as an independent significant factor explaining the variance in bone strength. These results indicate that neuromuscular performance should be measured and preferred over body mass in models predicting skeletal robusticity.

Research paper thumbnail of Flexible multibody simulation approach in the analysis of tibial strain during walking

Journal of Biomechanics, 2008

Research paper thumbnail of Bone rigidity to neuromuscular performance ratio in young and elderly men

Research paper thumbnail of Effect of innervation zones in estimating biceps brachii force–EMG relationship during isometric contraction

Journal of Electromyography and Kinesiology

Research paper thumbnail of Flexible multibody approach in forward dynamic simulation of locomotive strains in human skeleton with flexible lower body bones

Multibody System Dynamics, 2011

A method for bone strain estimation is examined in this article. The flexibility of a single bone... more A method for bone strain estimation is examined in this article. The flexibility of a single bone in an otherwise rigid human skeleton model has been studied previously by various authors. However, in the previous studies, the effect of the flexibility of multiple bones on the musculoskeletal model behavior was ignored. This study describes a simulation method that can be used to estimate the bone strains at both tibias and femurs of a 65-year-old Caucasian male subject. The verification of the method is performed by the comparison of the results with other studies available in literature. The results of the study show good correlation with the results of previous empirical studies. A damping effect of the flexible bones on the model is also studied in this paper.