Stephen Price | Diamond Light Source (original) (raw)
Papers by Stephen Price
The physicochemical state of a catalyst is a key factor in determining both activity and selectiv... more The physicochemical state of a catalyst is a key factor in determining both activity and selectivity; however these materials are often not structurally or compositionally homogeneous. Here we report on the 3-dimensional imaging of an industrial catalyst, Mo-promoted colloidal Pt supported on carbon. The distribution of both the active Pt species and Mo promoter have been mapped over a single particle of catalyst using microfocus X-ray fluorescence computed tomography. X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure revealed a mixed local coordination environment, including the presence of both metallic Pt clusters and Pt chloride species, but also no direct interaction between the catalyst and Mo promoter. We also report on the benefits of scanning μ-XANES computed tomography for chemical imaging, allowing for 2- and 3-dimensional mapping of the local electronic and geometric environment, in this instance for both the Pt catalyst and Mo promoter throughout the catalyst particle.
Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, Jan 13, 2015
Tomographic datasets collected at synchrotrons are becoming very large and complex, and, therefor... more Tomographic datasets collected at synchrotrons are becoming very large and complex, and, therefore, need to be managed efficiently. Raw images may have high pixel counts, and each pixel can be multidimensional and associated with additional data such as those derived from spectroscopy. In time-resolved studies, hundreds of tomographic datasets can be collected in sequence, yielding terabytes of data. Users of tomographic beamlines are drawn from various scientific disciplines, and many are keen to use tomographic reconstruction software that does not require a deep understanding of reconstruction principles. We have developed Savu, a reconstruction pipeline that enables users to rapidly reconstruct data to consistently create high-quality results. Savu is designed to work in an 'orthogonal' fashion, meaning that data can be converted between projection and sinogram space throughout the processing workflow as required. The Savu pipeline is modular and allows processing strate...
Journal of the American Chemical Society, Jan 7, 2011
The underpotential deposition (upd) of a Cu shell on a non-Pt nanoparticle core followed by galva... more The underpotential deposition (upd) of a Cu shell on a non-Pt nanoparticle core followed by galvanic displacement of the Cu template shell to form core-shell electrocatalyst materials is one means by which the Pt-based mass activity targets required for commercialization of PEM fuel cells may be reached. In situ EXAFS measurements were conducted at both the Au L(3) and the Cu K absorption edges during deposition of Cu onto a carbon-supported Au electrocatalyst to study the initial stages of formation of such a core-shell electrocatalyst. The Au L(3) EXAFS data obtained in 0.5 mol dm(-3) H(2)SO(4) show that the shape of the Au core is potential dependent, from a flattened to a round spherical shape as the Cu upd potential is approached. Following the addition of 2 mmol dm(-3) Cu, the structure was also measured as a function of the applied potential. At +0.2 V vs Hg/Hg(2)SO(4), the Cu(2+) species was found to be a hydrated octahedron. As the potential was made more negative, single-c...
ABSTRACT Core-shell electrocatalysts are of increased interest in PEM fuel cells as a means of im... more ABSTRACT Core-shell electrocatalysts are of increased interest in PEM fuel cells as a means of improving activity and reducing costs. In situ x-ray absorption spectroscopy (XAS) provides a unique opportunity to provide characterization of the structure of such materials under operating conditions, enabling the effects of the electrochemical environment on the structures to be explored. However, such measurements present numerous challenges in terms of both data collection and analysis. Here we present two case studies that illustrate both the opportunities and challenges; (i) the modification of a Pt catalyst by Ru and the potential dependent formation of a surface alloy and (ii) a Pt shell - Pd core catalyst with varying shell thickness.
Physical Review B, 2012
ABSTRACT The estimation of metal nanoparticle diameter by analysis of extended x-ray absorption f... more ABSTRACT The estimation of metal nanoparticle diameter by analysis of extended x-ray absorption fine structure (EXAFS) data from coordination numbers is nontrivial, particularly for particles <5 nm in diameter, for which the undercoordination of surface atoms becomes an increasingly significant contribution to the average coordination number. These undercoordinated atoms have increased degrees of freedom over those within the core of the particle, which results in an increase in the degree of structural disorder with decreasing particle size. This increase in disorder, however, is not accounted for by the standard means of EXAFS analysis, where each coordination shell is fitted with a single bond length and disorder term. In addition, the surface atoms of nanoparticles have been observed to undergo a greater contraction than those in the core, further increasing the range of bond distances. Failure to account for this structural change results in an increased disorder being measured, and therefore, a lower apparent coordination number and corresponding particle size are found. Here, we employ molecular dynamics (MD) simulations for a range of nanoparticle sizes to determine each of the nearest neighbor bond lengths, which were then binned into a histogram to construct a radial distribution function (RDF). Each bin from the histogram was considered to be a single scattering path and subsequently used in fitting the EXAFS data obtained for a series of carbon-supported platinum nanoparticles. These MD-based fits are compared with those obtained using a standard fitting model using Artemis and the standard model with the inclusion of higher cumulants, which has previously been used to account for the non-Gaussian distribution of neighboring atoms around the absorber. The results from all three fitting methods were converted to particle sizes and compared with those obtained from transmission electron microscopy (TEM) and x-ray diffraction (XRD) measurements. We find that the use of molecular dynamics simulations resulted in an improved fit over both the standard and cumulant models, in terms of both quality of fit and correlation with the known average particle size.
Journal of Power Sources, 2014
Electrochemistry Communications, 2013
Angewandte Chemie (International ed. in English), Jul 3, 2015
Heterogeneous catalysis performed in the liquid phase is an important type of catalytic process w... more Heterogeneous catalysis performed in the liquid phase is an important type of catalytic process which is rarely studied in situ. Using microfocus X-ray fluorescence and X-ray diffraction computed tomography (μ-XRF-CT, μ-XRD-CT) in combination with X-ray absorption near-edge spectroscopy (XANES), we have determined the active state of a Mo-promoted Pt/C catalyst (NanoSelect) for the liquid-phase hydrogenation of nitrobenzene under standard operating conditions. First, μ-XRF-CT and μ-XRD-CT reveal the active state of Pt catalyst to be reduced, noncrystalline, and evenly dispersed across the support surface. Second, imaging of the Pt and Mo distribution reveals they are highly stable on the support and not prone to leaching during the reaction. This study demonstrates the ability of chemical computed tomography to image the nature and spatial distribution of catalysts under reaction conditions.
The physicochemical state of a catalyst is a key factor in determining both activity and selectiv... more The physicochemical state of a catalyst is a key factor in determining both activity and selectivity; however these materials are often not structurally or compositionally homogeneous. Here we report on the 3-dimensional imaging of an industrial catalyst, Mo-promoted colloidal Pt supported on carbon. The distribution of both the active Pt species and Mo promoter have been mapped over a single particle of catalyst using microfocus X-ray fluorescence computed tomography. X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure revealed a mixed local coordination environment, including the presence of both metallic Pt clusters and Pt chloride species, but also no direct interaction between the catalyst and Mo promoter. We also report on the benefits of scanning μ-XANES computed tomography for chemical imaging, allowing for 2- and 3-dimensional mapping of the local electronic and geometric environment, in this instance for both the Pt catalyst and Mo promoter throughout the catalyst particle.
Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, Jan 13, 2015
Tomographic datasets collected at synchrotrons are becoming very large and complex, and, therefor... more Tomographic datasets collected at synchrotrons are becoming very large and complex, and, therefore, need to be managed efficiently. Raw images may have high pixel counts, and each pixel can be multidimensional and associated with additional data such as those derived from spectroscopy. In time-resolved studies, hundreds of tomographic datasets can be collected in sequence, yielding terabytes of data. Users of tomographic beamlines are drawn from various scientific disciplines, and many are keen to use tomographic reconstruction software that does not require a deep understanding of reconstruction principles. We have developed Savu, a reconstruction pipeline that enables users to rapidly reconstruct data to consistently create high-quality results. Savu is designed to work in an 'orthogonal' fashion, meaning that data can be converted between projection and sinogram space throughout the processing workflow as required. The Savu pipeline is modular and allows processing strate...
Journal of the American Chemical Society, Jan 7, 2011
The underpotential deposition (upd) of a Cu shell on a non-Pt nanoparticle core followed by galva... more The underpotential deposition (upd) of a Cu shell on a non-Pt nanoparticle core followed by galvanic displacement of the Cu template shell to form core-shell electrocatalyst materials is one means by which the Pt-based mass activity targets required for commercialization of PEM fuel cells may be reached. In situ EXAFS measurements were conducted at both the Au L(3) and the Cu K absorption edges during deposition of Cu onto a carbon-supported Au electrocatalyst to study the initial stages of formation of such a core-shell electrocatalyst. The Au L(3) EXAFS data obtained in 0.5 mol dm(-3) H(2)SO(4) show that the shape of the Au core is potential dependent, from a flattened to a round spherical shape as the Cu upd potential is approached. Following the addition of 2 mmol dm(-3) Cu, the structure was also measured as a function of the applied potential. At +0.2 V vs Hg/Hg(2)SO(4), the Cu(2+) species was found to be a hydrated octahedron. As the potential was made more negative, single-c...
ABSTRACT Core-shell electrocatalysts are of increased interest in PEM fuel cells as a means of im... more ABSTRACT Core-shell electrocatalysts are of increased interest in PEM fuel cells as a means of improving activity and reducing costs. In situ x-ray absorption spectroscopy (XAS) provides a unique opportunity to provide characterization of the structure of such materials under operating conditions, enabling the effects of the electrochemical environment on the structures to be explored. However, such measurements present numerous challenges in terms of both data collection and analysis. Here we present two case studies that illustrate both the opportunities and challenges; (i) the modification of a Pt catalyst by Ru and the potential dependent formation of a surface alloy and (ii) a Pt shell - Pd core catalyst with varying shell thickness.
Physical Review B, 2012
ABSTRACT The estimation of metal nanoparticle diameter by analysis of extended x-ray absorption f... more ABSTRACT The estimation of metal nanoparticle diameter by analysis of extended x-ray absorption fine structure (EXAFS) data from coordination numbers is nontrivial, particularly for particles <5 nm in diameter, for which the undercoordination of surface atoms becomes an increasingly significant contribution to the average coordination number. These undercoordinated atoms have increased degrees of freedom over those within the core of the particle, which results in an increase in the degree of structural disorder with decreasing particle size. This increase in disorder, however, is not accounted for by the standard means of EXAFS analysis, where each coordination shell is fitted with a single bond length and disorder term. In addition, the surface atoms of nanoparticles have been observed to undergo a greater contraction than those in the core, further increasing the range of bond distances. Failure to account for this structural change results in an increased disorder being measured, and therefore, a lower apparent coordination number and corresponding particle size are found. Here, we employ molecular dynamics (MD) simulations for a range of nanoparticle sizes to determine each of the nearest neighbor bond lengths, which were then binned into a histogram to construct a radial distribution function (RDF). Each bin from the histogram was considered to be a single scattering path and subsequently used in fitting the EXAFS data obtained for a series of carbon-supported platinum nanoparticles. These MD-based fits are compared with those obtained using a standard fitting model using Artemis and the standard model with the inclusion of higher cumulants, which has previously been used to account for the non-Gaussian distribution of neighboring atoms around the absorber. The results from all three fitting methods were converted to particle sizes and compared with those obtained from transmission electron microscopy (TEM) and x-ray diffraction (XRD) measurements. We find that the use of molecular dynamics simulations resulted in an improved fit over both the standard and cumulant models, in terms of both quality of fit and correlation with the known average particle size.
Journal of Power Sources, 2014
Electrochemistry Communications, 2013
Angewandte Chemie (International ed. in English), Jul 3, 2015
Heterogeneous catalysis performed in the liquid phase is an important type of catalytic process w... more Heterogeneous catalysis performed in the liquid phase is an important type of catalytic process which is rarely studied in situ. Using microfocus X-ray fluorescence and X-ray diffraction computed tomography (μ-XRF-CT, μ-XRD-CT) in combination with X-ray absorption near-edge spectroscopy (XANES), we have determined the active state of a Mo-promoted Pt/C catalyst (NanoSelect) for the liquid-phase hydrogenation of nitrobenzene under standard operating conditions. First, μ-XRF-CT and μ-XRD-CT reveal the active state of Pt catalyst to be reduced, noncrystalline, and evenly dispersed across the support surface. Second, imaging of the Pt and Mo distribution reveals they are highly stable on the support and not prone to leaching during the reaction. This study demonstrates the ability of chemical computed tomography to image the nature and spatial distribution of catalysts under reaction conditions.