brain cells – NIH Director's Blog (original) (raw)

Creative Minds: A Transcriptional “Periodic Table” of Human Neurons

Posted on June 8th, 2017 by Dr. Francis Collins

neuronal cell

Caption: Mouse fibroblasts converted into induced neuronal cells, showing neuronal appendages (red), nuclei (blue) and the neural protein tau (yellow).
Credit: Kristin Baldwin, Scripps Research Institute, La Jolla, CA

Writers have The Elements of Style, chemists have the periodic table, and biomedical researchers could soon have a comprehensive reference on how to make neurons in a dish. Kristin Baldwin of the Scripps Research Institute, La Jolla, CA, has received a 2016 NIH Director’s Pioneer Award to begin drafting an online resource that will provide other researchers the information they need to reprogram mature human skin cells reproducibly into a variety of neurons that closely resemble those found in the brain and nervous system.

These lab-grown neurons could be used to improve our understanding of basic human biology and to develop better models for studying Alzheimer’s disease, autism, and a wide range of other neurological conditions. Such questions have been extremely difficult to explore in mice and other animal models because they have shorter lifespans and different brain structures than humans.

Posted In: Health, Science

Tags: 2016 NIH Director’s Pioneer Award, addiction, aging, aging brain, Alzheimer’s disease, anxiety, autism, brain, brain cells, dopamine, fibroblasts, human neurons, iN cells, induced Pluripotent Stem cells, iPSCs, mental illness, neurobiology, neurology, neuronal subtypes, neurons, nicotinic receptors, serotonin, The Periodic Table, transcription factors, wellderly


Cool Videos: Flashes of Neuronal Brilliance

Posted on March 2nd, 2017 by Dr. Francis Collins

When you have a bright idea or suddenly understand something, you might say that a light bulb just went on in your head. But, as the flashing lights of this very cool video show, the brain’s signaling cells, called neurons, continually switch on and off in response to a wide range of factors, simple or sublime.

The technology used to produce this video—a recent winner in the Federation of American Societies for Experimental Biology’s BioArt contest—takes advantage of the fact that whenever a neuron is activated, levels of calcium increase inside the cell. To capture that activity, graduate student Caitlin Vander Weele in Kay M. Tye’s lab at the Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, engineered neurons in a mouse’s brain to produce a bright fluorescent signal whenever calcium increases. Consequently, each time a neuron was activated, the fluorescent indicator lit up and the changes were detected with a miniature microscope. The brighter the flash, the greater the activity!

Posted In: Science, Video

Tags: addiction, brain, brain activity, brain cells, calcium, depression, epifluorescent microscope, FASEB Bioart 2016, Genetically-Encoded Neuronal Indicator and Effector, GENIE, imaging, Interstellate, neurons, neuropsychiatric disorders, neuroscience, prefrontal cortex


LabTV: Curious about the Aging Brain

Posted on May 14th, 2015 by Dr. Francis Collins

Saul Villeda

This LabTV video takes us to the West Coast to meet Saul Villeda, a creative young researcher who’s exploring ways to reduce the effects of aging on the human brain. Thanks to a 2012 NIH Director’s Early Independence award, Villeda set up his own lab at the University of California, San Francisco to study how age-related immune changes may affect the ability of brain cells to regenerate. By figuring out exactly what’s going on, Villeda and his team hope to devise ways to counteract such changes, possibly preventing or even reversing the cognitive declines that all too often come with age.

Villeda is the first person in his family to become a scientist. His parents immigrated to the United States from Guatemala, settled into a working-class neighborhood in Pasadena, CA, and enrolled their kids in public schools. While he was growing up, Villeda says he’d never even heard of a Ph.D. and thought all doctors were M.D.’s who wore stethoscopes. But he did have a keen mind and a strong sense of curiosity—gifts that helped him become the valedictorian of his high school class and find his calling in science. Villeda went on to earn an undergraduate degree in physiological science from the University of California, Los Angeles and a Ph.D. in neurosciences from Stanford University Medical School, Palo Alto, CA, as well as to publish his research findings in several influential scientific journals.

Posted In: Health, Training, Video

Tags: aging, aging brain, brain, brain cells, curiosity, Early Independence Award, Guatemala, immunology, life span, neurology, neuroscience, science careers


BRAIN: Launching America’s Next Moonshot

Posted on September 30th, 2014 by Dr. Francis Collins

A stylized rocket headed toward a moon made of a human brain

Moonshot to the BRAIN

Some have called it America’s next moonshot. Indeed, like the historic effort that culminated with the first moon landing in 1969, the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative is a bold, ambitious endeavor that will require the energy of thousands of our nation’s most creative minds working together over the long haul.

Our goal? To produce the first dynamic view of the human brain in action, revealing how its roughly 86 billion neurons and its trillions of connections interact in real time. This new view will revolutionize our understanding of how we think, feel, learn, remember, and move, transforming efforts to help the more than 1 billion people worldwide who suffer from autism, depression, schizophrenia, epilepsy, traumatic brain injury, Parkinson’s disease, Alzheimer’s disease, and other devastating brain disorders.

Posted In: Health, Science

Tags: brain, BRAIN 2025, BRAIN awardees, brain cells, brain circuits, brain disorders, BRAIN Initiative, Brain Research through Advancing Innovative Neurotechnologies Initiative, cognition, moonshot, neuroimaging, neuroscience, research grants


Mice Learn Better with Help from Human Brain Cells

Posted on March 7th, 2013 by Dr. Francis Collins

Photo image of human astrocytes

Human astrocytes in a mouse brain
Source: Steven Goldman, M.D., Ph.D., University of Rochester Medical Center

What happens when you implant human glia—a type of brain cell that protects and nurtures neurons—into the brains of newborn mice? Well, it turns out these glia mature into multi-talented astrocyte cells that provide nutrients, repair injuries, and modulate signals just like they do in a human brain. They even assume the same complex star shape!

We know the cells in question are indeed human astrocytes because they produce a group of specific proteins, which are tagged with a combination of dyes that together appear yellow in this image. In contrast, the mouse cells are blue.

This all looks very pretty, but you might wonder what impact these human astrocytes have on mouse cognition. Researchers found mice that received the implants were better able to learn and remember than those that didn’t. In short, the human cells seem to have made the mice smarter.

Interestingly, human astrocytes are larger, more complex, and more diverse than their counterparts in other species. So, perhaps these cells may hold some of the keys to our own unique cognitive abilities.

Reference:

Forebrain Engraftment by Human Glial Progenitor Cells Enhances Synaptic Plasticity and Learning in Adult Mice. Xiaoning Han, Michael Chen, Fushun Wang, Martha Windrem, Su Wang, Steven Shanz, Qiwu Xu, Nancy Ann Oberheim, Lane Bekar, Sarah Betstadt, Alcino J. Silva, Takahiro Takano, Steven A. Goldman, and Maiken Nedergaard. Cell Stem Cell 12, 342–353, March 7, 2013.

NIH support: the National Institute of Mental Health; and the National Institute of Neurological Disorders and Stroke