F508del – NIH Director's Blog (original) (raw)

Another Milestone in the Cystic Fibrosis Journey

Posted on July 20th, 2017 by Dr. Francis Collins

Avalyn Mahoney

Caption: Two-year-old Avalyn is among the cystic fibrosis patients who may be helped by targeted drugs.
Credit: Brittany Mahoney

As NIH Director, I often hear stories of how people with serious diseases—from arthritis to Zika infection—are benefitting from the transformational power of NIH’s investments in basic science. Today, I’d like to share one such advance that I find particularly exciting: news that a combination of three molecularly targeted drugs may finally make it possible to treat the vast majority of patients with cystic fibrosis (CF), our nation’s most common genetic disease.

First, a bit of history! The first genetic mutation that causes CF was discovered by a collaborative effort between my own research lab at the University of Michigan, Ann Arbor, and colleagues at the Hospital for Sick Children in Toronto—more than 25 years ago [1]. Years of hard work, supported by the National Institutes of Health and the Cystic Fibrosis Foundation, painstakingly worked out the normal function of the protein that is altered in CF, called the cystic fibrosis transmembrane regulator (CFTR). Very recently new technologies, such as cryo-EM, have given researchers the ability to map the exact structure of the protein involved in CF.

Among the tens of thousands of CF patients who stand to benefit from the next generation of targeted drugs is little Avalyn Mahoney of Cardiff by the Sea, CA. Just a few decades ago, a kid like Avalyn—who just turned 2 last month—probably wouldn’t have made it beyond her teens. But today the outlook is far brighter for her and so many others, thanks to recent advances that build upon NIH-supported basic research.

Posted In: Health, Science

Tags: CF, CFTR, clinical research, cystic fibrosis, Cystic Fibrosis Foundation, drug development, F508del, genetics, genomics, ivacaftor, Kalydeco, next-generation drugs, Orkambi, precision medicine, rare diseases, tezacaftor, Vertex Pharmaceuticals


Cystic Fibrosis: Keeping the Momentum Going

Posted on December 8th, 2015 by Dr. Francis Collins

Cystic Fibrosis: 1989 and 2015

Caption: Lower left, me, Lap-Chee Tsui, and John Riordan celebrating our discovery of the cystic fibrosis gene. Right, Robert J. Beall, me, and Doris Tulcin at a November Cystic Fibrosis Foundation event honoring Dr. Beall.

It’s been more than a quarter-century since my colleagues and I were able to identify the gene responsible for cystic fibrosis (CF), a life-shortening inherited disease that mainly affects the lungs and pancreas [1]. And, at a recent event in New York, I had an opportunity to celebrate how far we’ve come since then in treating CF, as well as to honor a major force behind that progress, Dr. Bob Beall, who has just retired as president and chief executive officer of the Cystic Fibrosis Foundation.

Thanks to the tireless efforts of Bob and many others in the public and private sectors to support basic, translational, and clinical research, we today have two therapies from Vertex Pharmaceuticals that are targeted specifically at CF’s underlying molecular cause: ivacaftor (Kalydeco™), approved by the Food and Drug Administration (FDA) in 2012 for people with an uncommon mutation in the CF gene; and the combination ivacaftor-lumacaftor (Orkambi™), approved by the FDA in July for the roughly 50 percent of CF patients with two copies of the most common mutation. Yet more remains to be done before we can truly declare victory. Not only are new therapies needed for people with other CF mutations, but also for those with the common mutation who don’t respond well to Orkambi™. So, the work needs to go on, and I’m encouraged by new findings that suggest a different strategy for helping folks with the most common CF mutation.

Posted In: Health, Science

Tags: Bob Beall, CF, CFTR, chronic infections, cystic fibrosis, Cystic Fibrosis Foundation, cystic fibrosis transmembrane conductance regulator gene, Doris Tulcin, F508del, genetic disorder, interactome, interactome remodelling, ion channel, ivacaftor, John Riordan, Kalydeco, Lap-Chee Tsui, lumacaftor, lung infections, lungs, misfolded proteins, Orkambi, pancreas, protein networks, proteomics, respiratory diseases, Vertex Pharmaceuticals