single cell sequencing – NIH Director's Blog (original) (raw)

Single-Cell Study Offers New Clue into Causes of Cystic Fibrosis

Posted on May 27th, 2021 by Dr. Francis Collins

Healthy airways (left) show well-defined layers of ciliated cells (green) and basal stem cells (red). In airways affected by cystic fibrosis (right), the layers are disrupted, and a transitioning cell type (red and green in the same cell).

Credit: Carraro G, Nature, 2021

More than 30 years ago, I co-led the Michigan-Toronto team that discovered that cystic fibrosis (CF) is caused by an inherited misspelling in the cystic fibrosis transmembrane conductance regulator (CFTR) gene [1]. The CFTR protein’s normal function on the surface of epithelial cells is to serve as a gated channel for chloride ions to pass in and out of the cell. But this function is lost in individuals for whom both copies of CFTR are misspelled. As a consequence, water and salt get out of balance, leading to the production of the thick mucus that leaves people with CF prone to life-threatening lung infections.

It took three decades, but that CFTR gene discovery has now led to the development of a precise triple drug therapy that activates the dysfunctional CFTR protein and provides major benefit to most children and adults with CF. But about 10 percent of individuals with CF have mutations that result in the production of virtually no CFTR protein, which means there is nothing for current triple therapy to correct or activate.

That’s why more basic research is needed to tease out other factors that contribute to CF and, if treatable, could help even more people control the condition and live longer lives with less chronic illness. A recent NIH-supported study, published in the journal Nature Medicine [2], offers an interesting basic clue, and it’s visible in the image above.

The healthy lung tissue (left) shows a well-defined and orderly layer of ciliated cells (green), which use hair-like extensions to clear away mucus and debris. Running closely alongside it is a layer of basal cells (outlined in red), which includes stem cells that are essential for repairing and regenerating upper airway tissue. (DNA indicating the position of cell is stained in blue).

In the CF-affected airways (right), those same cell types are present. However, compared to the healthy lung tissue, they appear to be in a state of disarray. Upon closer inspection, there’s something else that’s unusual if you look carefully: large numbers of a third, transitional cell subtype (outlined in red with green in the nucleus) that combines properties of both basal stem cells and ciliated cells, which is suggestive of cells in transition. The image below more clearly shows these cells (yellow arrows).

Photomicroscopy showing red basal cells below green ciliated cells, with transitional cells between showing green centers and red outlines

Credit: Carraro G, Nature, 2021

The increased number of cells with transitional characteristics suggests an unsuccessful attempt by the lungs to produce more cells capable of clearing the mucus buildup that occurs in airways of people with CF. The data offer an important foundation and reference for continued study.

These findings come from a team led by Kathrin Plath and Brigitte Gomperts, University of California, Los Angeles; John Mahoney, Cystic Fibrosis Foundation, Lexington, MA; and Barry Stripp, Cedars-Sinai, Los Angeles. Together with their lab members, they’re part of a larger research team assembled through the Cystic Fibrosis Foundation’s Epithelial Stem Cell Consortium, which seeks to learn how the disease changes the lung’s cellular makeup and use that new knowledge to make treatment advances.

In this study, researchers analyzed the lungs of 19 people with CF and another 19 individuals with no evidence of lung disease. Those with CF had donated their lungs for research in the process of receiving a lung transplant. Those with healthy lungs were organ donors who died of other causes.

The researchers analyzed, one by one, many thousands of cells from the airway and classified them into subtypes based on their distinctive RNA patterns. Those patterns indicate which genes are switched on or off in each cell, as well as the degree to which they are activated. Using a sophisticated computer-based approach to sift through and compare data, the team created a comprehensive catalog of cell types and subtypes present in healthy airways and in those affected by CF.

The new catalogs also revealed that the airways of people with CF had alterations in the types and proportions of basal cells. Those differences included a relative overabundance of cells that appeared to be transitioning from basal stem cells into the specialized ciliated cells, which are so essential for clearing mucus from the lungs.

We are not yet at our journey’s end when it comes to realizing the full dream of defeating CF. For the 10 percent of CF patients who don’t benefit from the triple-drug therapy, the continuing work to find other treatment strategies should be encouraging news. Keep daring to dream of breathing free. Through continued research, we can make the story of CF into history!

References:

[1] Identification of the cystic fibrosis gene: chromosome walking and jumping. Rommens JM, Iannuzzi MC, Kerem B, Drumm ML, Melmer G, Dean M, Rozmahel R, Cole JL, Kennedy D, Hidaka N, et al. Science.1989 Sep 8;245(4922):1059-65.

[2] Transcriptional analysis of cystic fibrosis airways at single-cell resolution reveals altered epithelial cell states and composition. Carraro G, Langerman J, Sabri S, Lorenzana Z, Purkayastha A, Zhang G, Konda B, Aros CJ, Calvert BA, Szymaniak A, Wilson E, Mulligan M, Bhatt P, Lu J, Vijayaraj P, Yao C, Shia DW, Lund AJ, Israely E, Rickabaugh TM, Ernst J, Mense M, Randell SH, Vladar EK, Ryan AL, Plath K, Mahoney JE, Stripp BR, Gomperts BN. Nat Med. 2021 May;27(5):806-814.

Links:

Cystic Fibrosis (National Heart, Lung, and Blood Institute/NIH)

Kathrin Plath (University of California, Los Angeles)

Brigitte Gomperts (UCLA)

Stripp Lab (Cedars-Sinai, Los Angeles)

Cystic Fibrosis Foundation (Lexington, MA)

Epithelial Stem Cell Consortium (Cystic Fibrosis Foundation, Lexington, MA)

NIH Support: National Heart, Lung, and Blood Institute; National Institute of Diabetes and Digestive and Kidney Diseases; National Institute of General Medical Sciences; National Cancer Institute; National Center for Advancing Translational Sciences

Posted In: News

Tags: basal cells, cell biology, CF, CFTR, ciliated cells, cystic fibrosis, Cystic Fibrosis Foundation, epithelial cells, Epithelial Stem Cell Consortium, gene expression, lungs, mucus, rare disease, RNA, single cell analysis, single cell sequencing, transitional cell subtype, upper airway

Creative Minds: Can Salamanders Show Us How to Regrow Limbs?

Posted on April 21st, 2016 by Dr. Francis Collins

Jessica Whited

Jessica Whited /Credit: LightChaser Photography

Jessica Whited enjoys spending time with her 6-year-old twin boys, reading them stories, and letting their imaginations roam. One thing Whited doesn’t need to feed their curiosity about, however, is salamanders—they hear about those from Mom almost every day. Whited already has about 1,000 rare axolotl salamanders in her lab at Harvard University and Brigham and Women’s Hospital, Cambridge, MA. But caring for the 9-inch amphibians, which originate from the lakes and canals underlying Mexico City, certainly isn’t child’s play. Axolotls are entirely aquatic–their name translates to “water monster”; they like to bite each other; and they take 9 months to reach adulthood.

Like many other species of salamander, the axolotl (Ambystoma mexicanum) possesses a remarkable, almost magical, ability to grow back lost or damaged limbs. Whited’s interest in this power of limb regeneration earned her a 2015 NIH Director’s New Innovator Award. Her goal is to discover how the limbs of these salamanders know exactly where they’ve been injured and start regrowing from precisely that point, while at the same time forging vital new nerve connections to the brain. Ultimately, she hopes her work will help develop strategies to explore the possibility of “awakening” this regenerative ability in humans with injured or severed limbs.

Posted In: Health, Science

Tags: 2015 NIH Director’s New Innovator Award, Ambystoma mexicanum, amphibian, axolotl, axolotl salamander, blastema, CRISPR-Cas, limb regeneration, regenerative medicine, salamander, single cell analysis, single cell sequencing, tissue regeneration, transcriptome, vertebrate, wound epidermis, wound healing

Copying and Reading the Book of Life Inside One Cell, Accurately

Posted on November 19th, 2013 by Dr. Francis Collins

Microwell strip

Caption: The genome researchers collaborated with materials science engineers to create the arrays of microwells or compartments that each capture a single cell.
Credit: UC San Diego Jacobs School of Engineering

Decoding the complete DNA genome in a single cell has been a major goal of technology developers. But the methods aren’t quite able to deal with that yet. So, for scientists to do this, they first need to make multiple copies of the DNA inside. Until now, the copying technology hasn’t been as accurate as scientists would like. If you think of the genome like a book, then our current copiers replicate certain chapters thousands of times, others just a few, and some not at all. As you can imagine, if you tried to read one of these copies, you’d be quite confused—and you certainly couldn’t rely on your reading for any medical purposes.

Now, NIH-funded researchers at the University of California, San Diego, have developed a new molecular technique that can accurately and uniformly copy the DNA inside a single cell [1]. Using this technique, they’ve already made some surprising discoveries.

Posted In: Science

Tags: cancer, DNA, genome, microbiome, Microwell Displacement Amplification System, MIDAS, National Institutes of Health, neurode, neurons, NIH, sequencing, single cell sequencing