string.rs - source (original) (raw)

alloc/

string.rs

1//! A UTF-8–encoded, growable string.
2//!
3//! This module contains the [`String`] type, the [`ToString`] trait for
4//! converting to strings, and several error types that may result from
5//! working with [`String`]s.
6//!
7//! # Examples
8//!
9//! There are multiple ways to create a new [`String`] from a string literal:
10//!
11//! ```
12//! let s = "Hello".to_string();
13//!
14//! let s = String::from("world");
15//! let s: String = "also this".into();
16//! ```
17//!
18//! You can create a new [`String`] from an existing one by concatenating with
19//! `+`:
20//!
21//! ```
22//! let s = "Hello".to_string();
23//!
24//! let message = s + " world!";
25//! ```
26//!
27//! If you have a vector of valid UTF-8 bytes, you can make a [`String`] out of
28//! it. You can do the reverse too.
29//!
30//! ```
31//! let sparkle_heart = vec![240, 159, 146, 150];
32//!
33//! // We know these bytes are valid, so we'll use `unwrap()`.
34//! let sparkle_heart = String::from_utf8(sparkle_heart).unwrap();
35//!
36//! assert_eq!("💖", sparkle_heart);
37//!
38//! let bytes = sparkle_heart.into_bytes();
39//!
40//! assert_eq!(bytes, [240, 159, 146, 150]);
41//! ```
42
43#![stable(feature = "rust1", since = "1.0.0")]
44
45use core::error::Error;
46use core::iter::FusedIterator;
47#[cfg(not(no_global_oom_handling))]
48use core::iter::from_fn;
49#[cfg(not(no_global_oom_handling))]
50use core::ops::Add;
51#[cfg(not(no_global_oom_handling))]
52use core::ops::AddAssign;
53#[cfg(not(no_global_oom_handling))]
54use core::ops::Bound::{Excluded, Included, Unbounded};
55use core::ops::{self, Range, RangeBounds};
56use core::str::pattern::{Pattern, Utf8Pattern};
57use core::{fmt, hash, ptr, slice};
58
59#[cfg(not(no_global_oom_handling))]
60use crate::alloc::Allocator;
61#[cfg(not(no_global_oom_handling))]
62use crate::borrow::{Cow, ToOwned};
63use crate::boxed::Box;
64use crate::collections::TryReserveError;
65use crate::str::{self, CharIndices, Chars, Utf8Error, from_utf8_unchecked_mut};
66#[cfg(not(no_global_oom_handling))]
67use crate::str::{FromStr, from_boxed_utf8_unchecked};
68use crate::vec::{self, Vec};
69
70/// A UTF-8–encoded, growable string.
71///
72/// `String` is the most common string type. It has ownership over the contents
73/// of the string, stored in a heap-allocated buffer (see [Representation](#representation)).
74/// It is closely related to its borrowed counterpart, the primitive [`str`].
75///
76/// # Examples
77///
78/// You can create a `String` from [a literal string][`&str`] with [`String::from`]:
79///
80/// [`String::from`]: From::from
81///
82/// ```
83/// let hello = String::from("Hello, world!");
84/// ```
85///
86/// You can append a [`char`] to a `String` with the [`push`] method, and
87/// append a [`&str`] with the [`push_str`] method:
88///
89/// ```
90/// let mut hello = String::from("Hello, ");
91///
92/// hello.push('w');
93/// hello.push_str("orld!");
94/// ```
95///
96/// [`push`]: String::push
97/// [`push_str`]: String::push_str
98///
99/// If you have a vector of UTF-8 bytes, you can create a `String` from it with
100/// the [`from_utf8`] method:
101///
102/// ```
103/// // some bytes, in a vector
104/// let sparkle_heart = vec![240, 159, 146, 150];
105///
106/// // We know these bytes are valid, so we'll use `unwrap()`.
107/// let sparkle_heart = String::from_utf8(sparkle_heart).unwrap();
108///
109/// assert_eq!("💖", sparkle_heart);
110/// ```
111///
112/// [`from_utf8`]: String::from_utf8
113///
114/// # UTF-8
115///
116/// `String`s are always valid UTF-8. If you need a non-UTF-8 string, consider
117/// [`OsString`]. It is similar, but without the UTF-8 constraint. Because UTF-8
118/// is a variable width encoding, `String`s are typically smaller than an array of
119/// the same `char`s:
120///
121/// ```
122/// // `s` is ASCII which represents each `char` as one byte
123/// let s = "hello";
124/// assert_eq!(s.len(), 5);
125///
126/// // A `char` array with the same contents would be longer because
127/// // every `char` is four bytes
128/// let s = ['h', 'e', 'l', 'l', 'o'];
129/// let size: usize = s.into_iter().map(|c| size_of_val(&c)).sum();
130/// assert_eq!(size, 20);
131///
132/// // However, for non-ASCII strings, the difference will be smaller
133/// // and sometimes they are the same
134/// let s = "💖💖💖💖💖";
135/// assert_eq!(s.len(), 20);
136///
137/// let s = ['💖', '💖', '💖', '💖', '💖'];
138/// let size: usize = s.into_iter().map(|c| size_of_val(&c)).sum();
139/// assert_eq!(size, 20);
140/// ```
141///
142/// This raises interesting questions as to how `s[i]` should work.
143/// What should `i` be here? Several options include byte indices and
144/// `char` indices but, because of UTF-8 encoding, only byte indices
145/// would provide constant time indexing. Getting the `i`th `char`, for
146/// example, is available using [`chars`]:
147///
148/// ```
149/// let s = "hello";
150/// let third_character = s.chars().nth(2);
151/// assert_eq!(third_character, Some('l'));
152///
153/// let s = "💖💖💖💖💖";
154/// let third_character = s.chars().nth(2);
155/// assert_eq!(third_character, Some('💖'));
156/// ```
157///
158/// Next, what should `s[i]` return? Because indexing returns a reference
159/// to underlying data it could be `&u8`, `&[u8]`, or something similar.
160/// Since we're only providing one index, `&u8` makes the most sense but that
161/// might not be what the user expects and can be explicitly achieved with
162/// [`as_bytes()`]:
163///
164/// ```
165/// // The first byte is 104 - the byte value of `'h'`
166/// let s = "hello";
167/// assert_eq!(s.as_bytes()[0], 104);
168/// // or
169/// assert_eq!(s.as_bytes()[0], b'h');
170///
171/// // The first byte is 240 which isn't obviously useful
172/// let s = "💖💖💖💖💖";
173/// assert_eq!(s.as_bytes()[0], 240);
174/// ```
175///
176/// Due to these ambiguities/restrictions, indexing with a `usize` is simply
177/// forbidden:
178///
179/// ```compile_fail,E0277
180/// let s = "hello";
181///
182/// // The following will not compile!
183/// println!("The first letter of s is {}", s[0]);
184/// ```
185///
186/// It is more clear, however, how `&s[i..j]` should work (that is,
187/// indexing with a range). It should accept byte indices (to be constant-time)
188/// and return a `&str` which is UTF-8 encoded. This is also called "string slicing".
189/// Note this will panic if the byte indices provided are not character
190/// boundaries - see [`is_char_boundary`] for more details. See the implementations
191/// for [`SliceIndex<str>`] for more details on string slicing. For a non-panicking
192/// version of string slicing, see [`get`].
193///
194/// [`OsString`]: ../../std/ffi/struct.OsString.html "ffi::OsString"
195/// [`SliceIndex<str>`]: core::slice::SliceIndex
196/// [`as_bytes()`]: str::as_bytes
197/// [`get`]: str::get
198/// [`is_char_boundary`]: str::is_char_boundary
199///
200/// The [`bytes`] and [`chars`] methods return iterators over the bytes and
201/// codepoints of the string, respectively. To iterate over codepoints along
202/// with byte indices, use [`char_indices`].
203///
204/// [`bytes`]: str::bytes
205/// [`chars`]: str::chars
206/// [`char_indices`]: str::char_indices
207///
208/// # Deref
209///
210/// `String` implements <code>[Deref]<Target = [str]></code>, and so inherits all of [`str`]'s
211/// methods. In addition, this means that you can pass a `String` to a
212/// function which takes a [`&str`] by using an ampersand (`&`):
213///
214/// ```
215/// fn takes_str(s: &str) { }
216///
217/// let s = String::from("Hello");
218///
219/// takes_str(&s);
220/// ```
221///
222/// This will create a [`&str`] from the `String` and pass it in. This
223/// conversion is very inexpensive, and so generally, functions will accept
224/// [`&str`]s as arguments unless they need a `String` for some specific
225/// reason.
226///
227/// In certain cases Rust doesn't have enough information to make this
228/// conversion, known as [`Deref`] coercion. In the following example a string
229/// slice [`&'a str`][`&str`] implements the trait `TraitExample`, and the function
230/// `example_func` takes anything that implements the trait. In this case Rust
231/// would need to make two implicit conversions, which Rust doesn't have the
232/// means to do. For that reason, the following example will not compile.
233///
234/// ```compile_fail,E0277
235/// trait TraitExample {}
236///
237/// impl<'a> TraitExample for &'a str {}
238///
239/// fn example_func<A: TraitExample>(example_arg: A) {}
240///
241/// let example_string = String::from("example_string");
242/// example_func(&example_string);
243/// ```
244///
245/// There are two options that would work instead. The first would be to
246/// change the line `example_func(&example_string);` to
247/// `example_func(example_string.as_str());`, using the method [`as_str()`]
248/// to explicitly extract the string slice containing the string. The second
249/// way changes `example_func(&example_string);` to
250/// `example_func(&*example_string);`. In this case we are dereferencing a
251/// `String` to a [`str`], then referencing the [`str`] back to
252/// [`&str`]. The second way is more idiomatic, however both work to do the
253/// conversion explicitly rather than relying on the implicit conversion.
254///
255/// # Representation
256///
257/// A `String` is made up of three components: a pointer to some bytes, a
258/// length, and a capacity. The pointer points to the internal buffer which `String`
259/// uses to store its data. The length is the number of bytes currently stored
260/// in the buffer, and the capacity is the size of the buffer in bytes. As such,
261/// the length will always be less than or equal to the capacity.
262///
263/// This buffer is always stored on the heap.
264///
265/// You can look at these with the [`as_ptr`], [`len`], and [`capacity`]
266/// methods:
267///
268/// ```
269/// let story = String::from("Once upon a time...");
270///
271/// // Deconstruct the String into parts.
272/// let (ptr, len, capacity) = story.into_raw_parts();
273///
274/// // story has nineteen bytes
275/// assert_eq!(19, len);
276///
277/// // We can re-build a String out of ptr, len, and capacity. This is all
278/// // unsafe because we are responsible for making sure the components are
279/// // valid:
280/// let s = unsafe { String::from_raw_parts(ptr, len, capacity) } ;
281///
282/// assert_eq!(String::from("Once upon a time..."), s);
283/// ```
284///
285/// [`as_ptr`]: str::as_ptr
286/// [`len`]: String::len
287/// [`capacity`]: String::capacity
288///
289/// If a `String` has enough capacity, adding elements to it will not
290/// re-allocate. For example, consider this program:
291///
292/// ```
293/// let mut s = String::new();
294///
295/// println!("{}", s.capacity());
296///
297/// for _ in 0..5 {
298///     s.push_str("hello");
299///     println!("{}", s.capacity());
300/// }
301/// ```
302///
303/// This will output the following:
304///
305/// ```text
306/// 0
307/// 8
308/// 16
309/// 16
310/// 32
311/// 32
312/// ```
313///
314/// At first, we have no memory allocated at all, but as we append to the
315/// string, it increases its capacity appropriately. If we instead use the
316/// [`with_capacity`] method to allocate the correct capacity initially:
317///
318/// ```
319/// let mut s = String::with_capacity(25);
320///
321/// println!("{}", s.capacity());
322///
323/// for _ in 0..5 {
324///     s.push_str("hello");
325///     println!("{}", s.capacity());
326/// }
327/// ```
328///
329/// [`with_capacity`]: String::with_capacity
330///
331/// We end up with a different output:
332///
333/// ```text
334/// 25
335/// 25
336/// 25
337/// 25
338/// 25
339/// 25
340/// ```
341///
342/// Here, there's no need to allocate more memory inside the loop.
343///
344/// [str]: prim@str "str"
345/// [`str`]: prim@str "str"
346/// [`&str`]: prim@str "&str"
347/// [Deref]: core::ops::Deref "ops::Deref"
348/// [`Deref`]: core::ops::Deref "ops::Deref"
349/// [`as_str()`]: String::as_str
350#[derive(PartialEq, PartialOrd, Eq, Ord)]
351#[stable(feature = "rust1", since = "1.0.0")]
352#[lang = "String"]
353pub struct String {
354    vec: Vec<u8>,
355}
356
357/// A possible error value when converting a `String` from a UTF-8 byte vector.
358///
359/// This type is the error type for the [`from_utf8`] method on [`String`]. It
360/// is designed in such a way to carefully avoid reallocations: the
361/// [`into_bytes`] method will give back the byte vector that was used in the
362/// conversion attempt.
363///
364/// [`from_utf8`]: String::from_utf8
365/// [`into_bytes`]: FromUtf8Error::into_bytes
366///
367/// The [`Utf8Error`] type provided by [`std::str`] represents an error that may
368/// occur when converting a slice of [`u8`]s to a [`&str`]. In this sense, it's
369/// an analogue to `FromUtf8Error`, and you can get one from a `FromUtf8Error`
370/// through the [`utf8_error`] method.
371///
372/// [`Utf8Error`]: str::Utf8Error "std::str::Utf8Error"
373/// [`std::str`]: core::str "std::str"
374/// [`&str`]: prim@str "&str"
375/// [`utf8_error`]: FromUtf8Error::utf8_error
376///
377/// # Examples
378///
379/// ```
380/// // some invalid bytes, in a vector
381/// let bytes = vec![0, 159];
382///
383/// let value = String::from_utf8(bytes);
384///
385/// assert!(value.is_err());
386/// assert_eq!(vec![0, 159], value.unwrap_err().into_bytes());
387/// ```
388#[stable(feature = "rust1", since = "1.0.0")]
389#[cfg_attr(not(no_global_oom_handling), derive(Clone))]
390#[derive(Debug, PartialEq, Eq)]
391pub struct FromUtf8Error {
392    bytes: Vec<u8>,
393    error: Utf8Error,
394}
395
396/// A possible error value when converting a `String` from a UTF-16 byte slice.
397///
398/// This type is the error type for the [`from_utf16`] method on [`String`].
399///
400/// [`from_utf16`]: String::from_utf16
401///
402/// # Examples
403///
404/// ```
405/// // 𝄞mu<invalid>ic
406/// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
407///           0xD800, 0x0069, 0x0063];
408///
409/// assert!(String::from_utf16(v).is_err());
410/// ```
411#[stable(feature = "rust1", since = "1.0.0")]
412#[derive(Debug)]
413pub struct FromUtf16Error(());
414
415impl String {
416    /// Creates a new empty `String`.
417    ///
418    /// Given that the `String` is empty, this will not allocate any initial
419    /// buffer. While that means that this initial operation is very
420    /// inexpensive, it may cause excessive allocation later when you add
421    /// data. If you have an idea of how much data the `String` will hold,
422    /// consider the [`with_capacity`] method to prevent excessive
423    /// re-allocation.
424    ///
425    /// [`with_capacity`]: String::with_capacity
426    ///
427    /// # Examples
428    ///
429    /// ```
430    /// let s = String::new();
431    /// ```
432    #[inline]
433    #[rustc_const_stable(feature = "const_string_new", since = "1.39.0")]
434    #[rustc_diagnostic_item = "string_new"]
435    #[stable(feature = "rust1", since = "1.0.0")]
436    #[must_use]
437    pub const fn new() -> String {
438        String { vec: Vec::new() }
439    }
440
441    /// Creates a new empty `String` with at least the specified capacity.
442    ///
443    /// `String`s have an internal buffer to hold their data. The capacity is
444    /// the length of that buffer, and can be queried with the [`capacity`]
445    /// method. This method creates an empty `String`, but one with an initial
446    /// buffer that can hold at least `capacity` bytes. This is useful when you
447    /// may be appending a bunch of data to the `String`, reducing the number of
448    /// reallocations it needs to do.
449    ///
450    /// [`capacity`]: String::capacity
451    ///
452    /// If the given capacity is `0`, no allocation will occur, and this method
453    /// is identical to the [`new`] method.
454    ///
455    /// [`new`]: String::new
456    ///
457    /// # Panics
458    ///
459    /// Panics if the capacity exceeds `isize::MAX` _bytes_.
460    ///
461    /// # Examples
462    ///
463    /// ```
464    /// let mut s = String::with_capacity(10);
465    ///
466    /// // The String contains no chars, even though it has capacity for more
467    /// assert_eq!(s.len(), 0);
468    ///
469    /// // These are all done without reallocating...
470    /// let cap = s.capacity();
471    /// for _ in 0..10 {
472    ///     s.push('a');
473    /// }
474    ///
475    /// assert_eq!(s.capacity(), cap);
476    ///
477    /// // ...but this may make the string reallocate
478    /// s.push('a');
479    /// ```
480    #[cfg(not(no_global_oom_handling))]
481    #[inline]
482    #[stable(feature = "rust1", since = "1.0.0")]
483    #[must_use]
484    pub fn with_capacity(capacity: usize) -> String {
485        String { vec: Vec::with_capacity(capacity) }
486    }
487
488    /// Creates a new empty `String` with at least the specified capacity.
489    ///
490    /// # Errors
491    ///
492    /// Returns [`Err`] if the capacity exceeds `isize::MAX` bytes,
493    /// or if the memory allocator reports failure.
494    ///
495    #[inline]
496    #[unstable(feature = "try_with_capacity", issue = "91913")]
497    pub fn try_with_capacity(capacity: usize) -> Result<String, TryReserveError> {
498        Ok(String { vec: Vec::try_with_capacity(capacity)? })
499    }
500
501    /// Converts a vector of bytes to a `String`.
502    ///
503    /// A string ([`String`]) is made of bytes ([`u8`]), and a vector of bytes
504    /// ([`Vec<u8>`]) is made of bytes, so this function converts between the
505    /// two. Not all byte slices are valid `String`s, however: `String`
506    /// requires that it is valid UTF-8. `from_utf8()` checks to ensure that
507    /// the bytes are valid UTF-8, and then does the conversion.
508    ///
509    /// If you are sure that the byte slice is valid UTF-8, and you don't want
510    /// to incur the overhead of the validity check, there is an unsafe version
511    /// of this function, [`from_utf8_unchecked`], which has the same behavior
512    /// but skips the check.
513    ///
514    /// This method will take care to not copy the vector, for efficiency's
515    /// sake.
516    ///
517    /// If you need a [`&str`] instead of a `String`, consider
518    /// [`str::from_utf8`].
519    ///
520    /// The inverse of this method is [`into_bytes`].
521    ///
522    /// # Errors
523    ///
524    /// Returns [`Err`] if the slice is not UTF-8 with a description as to why the
525    /// provided bytes are not UTF-8. The vector you moved in is also included.
526    ///
527    /// # Examples
528    ///
529    /// Basic usage:
530    ///
531    /// ```
532    /// // some bytes, in a vector
533    /// let sparkle_heart = vec![240, 159, 146, 150];
534    ///
535    /// // We know these bytes are valid, so we'll use `unwrap()`.
536    /// let sparkle_heart = String::from_utf8(sparkle_heart).unwrap();
537    ///
538    /// assert_eq!("💖", sparkle_heart);
539    /// ```
540    ///
541    /// Incorrect bytes:
542    ///
543    /// ```
544    /// // some invalid bytes, in a vector
545    /// let sparkle_heart = vec![0, 159, 146, 150];
546    ///
547    /// assert!(String::from_utf8(sparkle_heart).is_err());
548    /// ```
549    ///
550    /// See the docs for [`FromUtf8Error`] for more details on what you can do
551    /// with this error.
552    ///
553    /// [`from_utf8_unchecked`]: String::from_utf8_unchecked
554    /// [`Vec<u8>`]: crate::vec::Vec "Vec"
555    /// [`&str`]: prim@str "&str"
556    /// [`into_bytes`]: String::into_bytes
557    #[inline]
558    #[stable(feature = "rust1", since = "1.0.0")]
559    #[rustc_diagnostic_item = "string_from_utf8"]
560    pub fn from_utf8(vec: Vec<u8>) -> Result<String, FromUtf8Error> {
561        match str::from_utf8(&vec) {
562            Ok(..) => Ok(String { vec }),
563            Err(e) => Err(FromUtf8Error { bytes: vec, error: e }),
564        }
565    }
566
567    /// Converts a slice of bytes to a string, including invalid characters.
568    ///
569    /// Strings are made of bytes ([`u8`]), and a slice of bytes
570    /// ([`&[u8]`][byteslice]) is made of bytes, so this function converts
571    /// between the two. Not all byte slices are valid strings, however: strings
572    /// are required to be valid UTF-8. During this conversion,
573    /// `from_utf8_lossy()` will replace any invalid UTF-8 sequences with
574    /// [`U+FFFD REPLACEMENT CHARACTER`][U+FFFD], which looks like this: �
575    ///
576    /// [byteslice]: prim@slice
577    /// [U+FFFD]: core::char::REPLACEMENT_CHARACTER
578    ///
579    /// If you are sure that the byte slice is valid UTF-8, and you don't want
580    /// to incur the overhead of the conversion, there is an unsafe version
581    /// of this function, [`from_utf8_unchecked`], which has the same behavior
582    /// but skips the checks.
583    ///
584    /// [`from_utf8_unchecked`]: String::from_utf8_unchecked
585    ///
586    /// This function returns a [`Cow<'a, str>`]. If our byte slice is invalid
587    /// UTF-8, then we need to insert the replacement characters, which will
588    /// change the size of the string, and hence, require a `String`. But if
589    /// it's already valid UTF-8, we don't need a new allocation. This return
590    /// type allows us to handle both cases.
591    ///
592    /// [`Cow<'a, str>`]: crate::borrow::Cow "borrow::Cow"
593    ///
594    /// # Examples
595    ///
596    /// Basic usage:
597    ///
598    /// ```
599    /// // some bytes, in a vector
600    /// let sparkle_heart = vec![240, 159, 146, 150];
601    ///
602    /// let sparkle_heart = String::from_utf8_lossy(&sparkle_heart);
603    ///
604    /// assert_eq!("💖", sparkle_heart);
605    /// ```
606    ///
607    /// Incorrect bytes:
608    ///
609    /// ```
610    /// // some invalid bytes
611    /// let input = b"Hello \xF0\x90\x80World";
612    /// let output = String::from_utf8_lossy(input);
613    ///
614    /// assert_eq!("Hello �World", output);
615    /// ```
616    #[must_use]
617    #[cfg(not(no_global_oom_handling))]
618    #[stable(feature = "rust1", since = "1.0.0")]
619    pub fn from_utf8_lossy(v: &[u8]) -> Cow<'_, str> {
620        let mut iter = v.utf8_chunks();
621
622        let Some(chunk) = iter.next() else {
623            return Cow::Borrowed("");
624        };
625        let first_valid = chunk.valid();
626        if chunk.invalid().is_empty() {
627            debug_assert_eq!(first_valid.len(), v.len());
628            return Cow::Borrowed(first_valid);
629        }
630
631        const REPLACEMENT: &str = "\u{FFFD}";
632
633        let mut res = String::with_capacity(v.len());
634        res.push_str(first_valid);
635        res.push_str(REPLACEMENT);
636
637        for chunk in iter {
638            res.push_str(chunk.valid());
639            if !chunk.invalid().is_empty() {
640                res.push_str(REPLACEMENT);
641            }
642        }
643
644        Cow::Owned(res)
645    }
646
647    /// Converts a [`Vec<u8>`] to a `String`, substituting invalid UTF-8
648    /// sequences with replacement characters.
649    ///
650    /// See [`from_utf8_lossy`] for more details.
651    ///
652    /// [`from_utf8_lossy`]: String::from_utf8_lossy
653    ///
654    /// Note that this function does not guarantee reuse of the original `Vec`
655    /// allocation.
656    ///
657    /// # Examples
658    ///
659    /// Basic usage:
660    ///
661    /// ```
662    /// #![feature(string_from_utf8_lossy_owned)]
663    /// // some bytes, in a vector
664    /// let sparkle_heart = vec![240, 159, 146, 150];
665    ///
666    /// let sparkle_heart = String::from_utf8_lossy_owned(sparkle_heart);
667    ///
668    /// assert_eq!(String::from("💖"), sparkle_heart);
669    /// ```
670    ///
671    /// Incorrect bytes:
672    ///
673    /// ```
674    /// #![feature(string_from_utf8_lossy_owned)]
675    /// // some invalid bytes
676    /// let input: Vec<u8> = b"Hello \xF0\x90\x80World".into();
677    /// let output = String::from_utf8_lossy_owned(input);
678    ///
679    /// assert_eq!(String::from("Hello �World"), output);
680    /// ```
681    #[must_use]
682    #[cfg(not(no_global_oom_handling))]
683    #[unstable(feature = "string_from_utf8_lossy_owned", issue = "129436")]
684    pub fn from_utf8_lossy_owned(v: Vec<u8>) -> String {
685        if let Cow::Owned(string) = String::from_utf8_lossy(&v) {
686            string
687        } else {
688            // SAFETY: `String::from_utf8_lossy`'s contract ensures that if
689            // it returns a `Cow::Borrowed`, it is a valid UTF-8 string.
690            // Otherwise, it returns a new allocation of an owned `String`, with
691            // replacement characters for invalid sequences, which is returned
692            // above.
693            unsafe { String::from_utf8_unchecked(v) }
694        }
695    }
696
697    /// Decode a native endian UTF-16–encoded vector `v` into a `String`,
698    /// returning [`Err`] if `v` contains any invalid data.
699    ///
700    /// # Examples
701    ///
702    /// ```
703    /// // 𝄞music
704    /// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
705    ///           0x0073, 0x0069, 0x0063];
706    /// assert_eq!(String::from("𝄞music"),
707    ///            String::from_utf16(v).unwrap());
708    ///
709    /// // 𝄞mu<invalid>ic
710    /// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
711    ///           0xD800, 0x0069, 0x0063];
712    /// assert!(String::from_utf16(v).is_err());
713    /// ```
714    #[cfg(not(no_global_oom_handling))]
715    #[stable(feature = "rust1", since = "1.0.0")]
716    pub fn from_utf16(v: &[u16]) -> Result<String, FromUtf16Error> {
717        // This isn't done via collect::<Result<_, _>>() for performance reasons.
718        // FIXME: the function can be simplified again when #48994 is closed.
719        let mut ret = String::with_capacity(v.len());
720        for c in char::decode_utf16(v.iter().cloned()) {
721            let Ok(c) = c else {
722                return Err(FromUtf16Error(()));
723            };
724            ret.push(c);
725        }
726        Ok(ret)
727    }
728
729    /// Decode a native endian UTF-16–encoded slice `v` into a `String`,
730    /// replacing invalid data with [the replacement character (`U+FFFD`)][U+FFFD].
731    ///
732    /// Unlike [`from_utf8_lossy`] which returns a [`Cow<'a, str>`],
733    /// `from_utf16_lossy` returns a `String` since the UTF-16 to UTF-8
734    /// conversion requires a memory allocation.
735    ///
736    /// [`from_utf8_lossy`]: String::from_utf8_lossy
737    /// [`Cow<'a, str>`]: crate::borrow::Cow "borrow::Cow"
738    /// [U+FFFD]: core::char::REPLACEMENT_CHARACTER
739    ///
740    /// # Examples
741    ///
742    /// ```
743    /// // 𝄞mus<invalid>ic<invalid>
744    /// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
745    ///           0x0073, 0xDD1E, 0x0069, 0x0063,
746    ///           0xD834];
747    ///
748    /// assert_eq!(String::from("𝄞mus\u{FFFD}ic\u{FFFD}"),
749    ///            String::from_utf16_lossy(v));
750    /// ```
751    #[cfg(not(no_global_oom_handling))]
752    #[must_use]
753    #[inline]
754    #[stable(feature = "rust1", since = "1.0.0")]
755    pub fn from_utf16_lossy(v: &[u16]) -> String {
756        char::decode_utf16(v.iter().cloned())
757            .map(|r| r.unwrap_or(char::REPLACEMENT_CHARACTER))
758            .collect()
759    }
760
761    /// Decode a UTF-16LE–encoded vector `v` into a `String`,
762    /// returning [`Err`] if `v` contains any invalid data.
763    ///
764    /// # Examples
765    ///
766    /// Basic usage:
767    ///
768    /// ```
769    /// #![feature(str_from_utf16_endian)]
770    /// // 𝄞music
771    /// let v = &[0x34, 0xD8, 0x1E, 0xDD, 0x6d, 0x00, 0x75, 0x00,
772    ///           0x73, 0x00, 0x69, 0x00, 0x63, 0x00];
773    /// assert_eq!(String::from("𝄞music"),
774    ///            String::from_utf16le(v).unwrap());
775    ///
776    /// // 𝄞mu<invalid>ic
777    /// let v = &[0x34, 0xD8, 0x1E, 0xDD, 0x6d, 0x00, 0x75, 0x00,
778    ///           0x00, 0xD8, 0x69, 0x00, 0x63, 0x00];
779    /// assert!(String::from_utf16le(v).is_err());
780    /// ```
781    #[cfg(not(no_global_oom_handling))]
782    #[unstable(feature = "str_from_utf16_endian", issue = "116258")]
783    pub fn from_utf16le(v: &[u8]) -> Result<String, FromUtf16Error> {
784        let (chunks, []) = v.as_chunks::<2>() else {
785            return Err(FromUtf16Error(()));
786        };
787        match (cfg!(target_endian = "little"), unsafe { v.align_to::<u16>() }) {
788            (true, ([], v, [])) => Self::from_utf16(v),
789            _ => char::decode_utf16(chunks.iter().copied().map(u16::from_le_bytes))
790                .collect::<Result<_, _>>()
791                .map_err(|_| FromUtf16Error(())),
792        }
793    }
794
795    /// Decode a UTF-16LE–encoded slice `v` into a `String`, replacing
796    /// invalid data with [the replacement character (`U+FFFD`)][U+FFFD].
797    ///
798    /// Unlike [`from_utf8_lossy`] which returns a [`Cow<'a, str>`],
799    /// `from_utf16le_lossy` returns a `String` since the UTF-16 to UTF-8
800    /// conversion requires a memory allocation.
801    ///
802    /// [`from_utf8_lossy`]: String::from_utf8_lossy
803    /// [`Cow<'a, str>`]: crate::borrow::Cow "borrow::Cow"
804    /// [U+FFFD]: core::char::REPLACEMENT_CHARACTER
805    ///
806    /// # Examples
807    ///
808    /// Basic usage:
809    ///
810    /// ```
811    /// #![feature(str_from_utf16_endian)]
812    /// // 𝄞mus<invalid>ic<invalid>
813    /// let v = &[0x34, 0xD8, 0x1E, 0xDD, 0x6d, 0x00, 0x75, 0x00,
814    ///           0x73, 0x00, 0x1E, 0xDD, 0x69, 0x00, 0x63, 0x00,
815    ///           0x34, 0xD8];
816    ///
817    /// assert_eq!(String::from("𝄞mus\u{FFFD}ic\u{FFFD}"),
818    ///            String::from_utf16le_lossy(v));
819    /// ```
820    #[cfg(not(no_global_oom_handling))]
821    #[unstable(feature = "str_from_utf16_endian", issue = "116258")]
822    pub fn from_utf16le_lossy(v: &[u8]) -> String {
823        match (cfg!(target_endian = "little"), unsafe { v.align_to::<u16>() }) {
824            (true, ([], v, [])) => Self::from_utf16_lossy(v),
825            (true, ([], v, [_remainder])) => Self::from_utf16_lossy(v) + "\u{FFFD}",
826            _ => {
827                let (chunks, remainder) = v.as_chunks::<2>();
828                let string = char::decode_utf16(chunks.iter().copied().map(u16::from_le_bytes))
829                    .map(|r| r.unwrap_or(char::REPLACEMENT_CHARACTER))
830                    .collect();
831                if remainder.is_empty() { string } else { string + "\u{FFFD}" }
832            }
833        }
834    }
835
836    /// Decode a UTF-16BE–encoded vector `v` into a `String`,
837    /// returning [`Err`] if `v` contains any invalid data.
838    ///
839    /// # Examples
840    ///
841    /// Basic usage:
842    ///
843    /// ```
844    /// #![feature(str_from_utf16_endian)]
845    /// // 𝄞music
846    /// let v = &[0xD8, 0x34, 0xDD, 0x1E, 0x00, 0x6d, 0x00, 0x75,
847    ///           0x00, 0x73, 0x00, 0x69, 0x00, 0x63];
848    /// assert_eq!(String::from("𝄞music"),
849    ///            String::from_utf16be(v).unwrap());
850    ///
851    /// // 𝄞mu<invalid>ic
852    /// let v = &[0xD8, 0x34, 0xDD, 0x1E, 0x00, 0x6d, 0x00, 0x75,
853    ///           0xD8, 0x00, 0x00, 0x69, 0x00, 0x63];
854    /// assert!(String::from_utf16be(v).is_err());
855    /// ```
856    #[cfg(not(no_global_oom_handling))]
857    #[unstable(feature = "str_from_utf16_endian", issue = "116258")]
858    pub fn from_utf16be(v: &[u8]) -> Result<String, FromUtf16Error> {
859        let (chunks, []) = v.as_chunks::<2>() else {
860            return Err(FromUtf16Error(()));
861        };
862        match (cfg!(target_endian = "big"), unsafe { v.align_to::<u16>() }) {
863            (true, ([], v, [])) => Self::from_utf16(v),
864            _ => char::decode_utf16(chunks.iter().copied().map(u16::from_be_bytes))
865                .collect::<Result<_, _>>()
866                .map_err(|_| FromUtf16Error(())),
867        }
868    }
869
870    /// Decode a UTF-16BE–encoded slice `v` into a `String`, replacing
871    /// invalid data with [the replacement character (`U+FFFD`)][U+FFFD].
872    ///
873    /// Unlike [`from_utf8_lossy`] which returns a [`Cow<'a, str>`],
874    /// `from_utf16le_lossy` returns a `String` since the UTF-16 to UTF-8
875    /// conversion requires a memory allocation.
876    ///
877    /// [`from_utf8_lossy`]: String::from_utf8_lossy
878    /// [`Cow<'a, str>`]: crate::borrow::Cow "borrow::Cow"
879    /// [U+FFFD]: core::char::REPLACEMENT_CHARACTER
880    ///
881    /// # Examples
882    ///
883    /// Basic usage:
884    ///
885    /// ```
886    /// #![feature(str_from_utf16_endian)]
887    /// // 𝄞mus<invalid>ic<invalid>
888    /// let v = &[0xD8, 0x34, 0xDD, 0x1E, 0x00, 0x6d, 0x00, 0x75,
889    ///           0x00, 0x73, 0xDD, 0x1E, 0x00, 0x69, 0x00, 0x63,
890    ///           0xD8, 0x34];
891    ///
892    /// assert_eq!(String::from("𝄞mus\u{FFFD}ic\u{FFFD}"),
893    ///            String::from_utf16be_lossy(v));
894    /// ```
895    #[cfg(not(no_global_oom_handling))]
896    #[unstable(feature = "str_from_utf16_endian", issue = "116258")]
897    pub fn from_utf16be_lossy(v: &[u8]) -> String {
898        match (cfg!(target_endian = "big"), unsafe { v.align_to::<u16>() }) {
899            (true, ([], v, [])) => Self::from_utf16_lossy(v),
900            (true, ([], v, [_remainder])) => Self::from_utf16_lossy(v) + "\u{FFFD}",
901            _ => {
902                let (chunks, remainder) = v.as_chunks::<2>();
903                let string = char::decode_utf16(chunks.iter().copied().map(u16::from_be_bytes))
904                    .map(|r| r.unwrap_or(char::REPLACEMENT_CHARACTER))
905                    .collect();
906                if remainder.is_empty() { string } else { string + "\u{FFFD}" }
907            }
908        }
909    }
910
911    /// Decomposes a `String` into its raw components: `(pointer, length, capacity)`.
912    ///
913    /// Returns the raw pointer to the underlying data, the length of
914    /// the string (in bytes), and the allocated capacity of the data
915    /// (in bytes). These are the same arguments in the same order as
916    /// the arguments to [`from_raw_parts`].
917    ///
918    /// After calling this function, the caller is responsible for the
919    /// memory previously managed by the `String`. The only way to do
920    /// this is to convert the raw pointer, length, and capacity back
921    /// into a `String` with the [`from_raw_parts`] function, allowing
922    /// the destructor to perform the cleanup.
923    ///
924    /// [`from_raw_parts`]: String::from_raw_parts
925    ///
926    /// # Examples
927    ///
928    /// ```
929    /// let s = String::from("hello");
930    ///
931    /// let (ptr, len, cap) = s.into_raw_parts();
932    ///
933    /// let rebuilt = unsafe { String::from_raw_parts(ptr, len, cap) };
934    /// assert_eq!(rebuilt, "hello");
935    /// ```
936    #[must_use = "losing the pointer will leak memory"]
937    #[stable(feature = "vec_into_raw_parts", since = "CURRENT_RUSTC_VERSION")]
938    pub fn into_raw_parts(self) -> (*mut u8, usize, usize) {
939        self.vec.into_raw_parts()
940    }
941
942    /// Creates a new `String` from a pointer, a length and a capacity.
943    ///
944    /// # Safety
945    ///
946    /// This is highly unsafe, due to the number of invariants that aren't
947    /// checked:
948    ///
949    /// * all safety requirements for [`Vec::<u8>::from_raw_parts`].
950    /// * all safety requirements for [`String::from_utf8_unchecked`].
951    ///
952    /// Violating these may cause problems like corrupting the allocator's
953    /// internal data structures. For example, it is normally **not** safe to
954    /// build a `String` from a pointer to a C `char` array containing UTF-8
955    /// _unless_ you are certain that array was originally allocated by the
956    /// Rust standard library's allocator.
957    ///
958    /// The ownership of `buf` is effectively transferred to the
959    /// `String` which may then deallocate, reallocate or change the
960    /// contents of memory pointed to by the pointer at will. Ensure
961    /// that nothing else uses the pointer after calling this
962    /// function.
963    ///
964    /// # Examples
965    ///
966    /// ```
967    /// unsafe {
968    ///     let s = String::from("hello");
969    ///
970    ///     // Deconstruct the String into parts.
971    ///     let (ptr, len, capacity) = s.into_raw_parts();
972    ///
973    ///     let s = String::from_raw_parts(ptr, len, capacity);
974    ///
975    ///     assert_eq!(String::from("hello"), s);
976    /// }
977    /// ```
978    #[inline]
979    #[stable(feature = "rust1", since = "1.0.0")]
980    pub unsafe fn from_raw_parts(buf: *mut u8, length: usize, capacity: usize) -> String {
981        unsafe { String { vec: Vec::from_raw_parts(buf, length, capacity) } }
982    }
983
984    /// Converts a vector of bytes to a `String` without checking that the
985    /// string contains valid UTF-8.
986    ///
987    /// See the safe version, [`from_utf8`], for more details.
988    ///
989    /// [`from_utf8`]: String::from_utf8
990    ///
991    /// # Safety
992    ///
993    /// This function is unsafe because it does not check that the bytes passed
994    /// to it are valid UTF-8. If this constraint is violated, it may cause
995    /// memory unsafety issues with future users of the `String`, as the rest of
996    /// the standard library assumes that `String`s are valid UTF-8.
997    ///
998    /// # Examples
999    ///
1000    /// ```
1001    /// // some bytes, in a vector
1002    /// let sparkle_heart = vec![240, 159, 146, 150];
1003    ///
1004    /// let sparkle_heart = unsafe {
1005    ///     String::from_utf8_unchecked(sparkle_heart)
1006    /// };
1007    ///
1008    /// assert_eq!("💖", sparkle_heart);
1009    /// ```
1010    #[inline]
1011    #[must_use]
1012    #[stable(feature = "rust1", since = "1.0.0")]
1013    pub unsafe fn from_utf8_unchecked(bytes: Vec<u8>) -> String {
1014        String { vec: bytes }
1015    }
1016
1017    /// Converts a `String` into a byte vector.
1018    ///
1019    /// This consumes the `String`, so we do not need to copy its contents.
1020    ///
1021    /// # Examples
1022    ///
1023    /// ```
1024    /// let s = String::from("hello");
1025    /// let bytes = s.into_bytes();
1026    ///
1027    /// assert_eq!(&[104, 101, 108, 108, 111][..], &bytes[..]);
1028    /// ```
1029    #[inline]
1030    #[must_use = "`self` will be dropped if the result is not used"]
1031    #[stable(feature = "rust1", since = "1.0.0")]
1032    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1033    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1034    pub const fn into_bytes(self) -> Vec<u8> {
1035        self.vec
1036    }
1037
1038    /// Extracts a string slice containing the entire `String`.
1039    ///
1040    /// # Examples
1041    ///
1042    /// ```
1043    /// let s = String::from("foo");
1044    ///
1045    /// assert_eq!("foo", s.as_str());
1046    /// ```
1047    #[inline]
1048    #[must_use]
1049    #[stable(feature = "string_as_str", since = "1.7.0")]
1050    #[rustc_diagnostic_item = "string_as_str"]
1051    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1052    pub const fn as_str(&self) -> &str {
1053        // SAFETY: String contents are stipulated to be valid UTF-8, invalid contents are an error
1054        // at construction.
1055        unsafe { str::from_utf8_unchecked(self.vec.as_slice()) }
1056    }
1057
1058    /// Converts a `String` into a mutable string slice.
1059    ///
1060    /// # Examples
1061    ///
1062    /// ```
1063    /// let mut s = String::from("foobar");
1064    /// let s_mut_str = s.as_mut_str();
1065    ///
1066    /// s_mut_str.make_ascii_uppercase();
1067    ///
1068    /// assert_eq!("FOOBAR", s_mut_str);
1069    /// ```
1070    #[inline]
1071    #[must_use]
1072    #[stable(feature = "string_as_str", since = "1.7.0")]
1073    #[rustc_diagnostic_item = "string_as_mut_str"]
1074    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1075    pub const fn as_mut_str(&mut self) -> &mut str {
1076        // SAFETY: String contents are stipulated to be valid UTF-8, invalid contents are an error
1077        // at construction.
1078        unsafe { str::from_utf8_unchecked_mut(self.vec.as_mut_slice()) }
1079    }
1080
1081    /// Appends a given string slice onto the end of this `String`.
1082    ///
1083    /// # Panics
1084    ///
1085    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
1086    ///
1087    /// # Examples
1088    ///
1089    /// ```
1090    /// let mut s = String::from("foo");
1091    ///
1092    /// s.push_str("bar");
1093    ///
1094    /// assert_eq!("foobar", s);
1095    /// ```
1096    #[cfg(not(no_global_oom_handling))]
1097    #[inline]
1098    #[stable(feature = "rust1", since = "1.0.0")]
1099    #[rustc_confusables("append", "push")]
1100    #[rustc_diagnostic_item = "string_push_str"]
1101    pub fn push_str(&mut self, string: &str) {
1102        self.vec.extend_from_slice(string.as_bytes())
1103    }
1104
1105    /// Copies elements from `src` range to the end of the string.
1106    ///
1107    /// # Panics
1108    ///
1109    /// Panics if the range has `start_bound > end_bound`, if the range is
1110    /// bounded on either end and does not lie on a [`char`] boundary, or if the
1111    /// new capacity exceeds `isize::MAX` bytes.
1112    ///
1113    /// # Examples
1114    ///
1115    /// ```
1116    /// let mut string = String::from("abcde");
1117    ///
1118    /// string.extend_from_within(2..);
1119    /// assert_eq!(string, "abcdecde");
1120    ///
1121    /// string.extend_from_within(..2);
1122    /// assert_eq!(string, "abcdecdeab");
1123    ///
1124    /// string.extend_from_within(4..8);
1125    /// assert_eq!(string, "abcdecdeabecde");
1126    /// ```
1127    #[cfg(not(no_global_oom_handling))]
1128    #[stable(feature = "string_extend_from_within", since = "1.87.0")]
1129    #[track_caller]
1130    pub fn extend_from_within<R>(&mut self, src: R)
1131    where
1132        R: RangeBounds<usize>,
1133    {
1134        let src @ Range { start, end } = slice::range(src, ..self.len());
1135
1136        assert!(self.is_char_boundary(start));
1137        assert!(self.is_char_boundary(end));
1138
1139        self.vec.extend_from_within(src);
1140    }
1141
1142    /// Returns this `String`'s capacity, in bytes.
1143    ///
1144    /// # Examples
1145    ///
1146    /// ```
1147    /// let s = String::with_capacity(10);
1148    ///
1149    /// assert!(s.capacity() >= 10);
1150    /// ```
1151    #[inline]
1152    #[must_use]
1153    #[stable(feature = "rust1", since = "1.0.0")]
1154    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1155    pub const fn capacity(&self) -> usize {
1156        self.vec.capacity()
1157    }
1158
1159    /// Reserves capacity for at least `additional` bytes more than the
1160    /// current length. The allocator may reserve more space to speculatively
1161    /// avoid frequent allocations. After calling `reserve`,
1162    /// capacity will be greater than or equal to `self.len() + additional`.
1163    /// Does nothing if capacity is already sufficient.
1164    ///
1165    /// # Panics
1166    ///
1167    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
1168    ///
1169    /// # Examples
1170    ///
1171    /// Basic usage:
1172    ///
1173    /// ```
1174    /// let mut s = String::new();
1175    ///
1176    /// s.reserve(10);
1177    ///
1178    /// assert!(s.capacity() >= 10);
1179    /// ```
1180    ///
1181    /// This might not actually increase the capacity:
1182    ///
1183    /// ```
1184    /// let mut s = String::with_capacity(10);
1185    /// s.push('a');
1186    /// s.push('b');
1187    ///
1188    /// // s now has a length of 2 and a capacity of at least 10
1189    /// let capacity = s.capacity();
1190    /// assert_eq!(2, s.len());
1191    /// assert!(capacity >= 10);
1192    ///
1193    /// // Since we already have at least an extra 8 capacity, calling this...
1194    /// s.reserve(8);
1195    ///
1196    /// // ... doesn't actually increase.
1197    /// assert_eq!(capacity, s.capacity());
1198    /// ```
1199    #[cfg(not(no_global_oom_handling))]
1200    #[inline]
1201    #[stable(feature = "rust1", since = "1.0.0")]
1202    pub fn reserve(&mut self, additional: usize) {
1203        self.vec.reserve(additional)
1204    }
1205
1206    /// Reserves the minimum capacity for at least `additional` bytes more than
1207    /// the current length. Unlike [`reserve`], this will not
1208    /// deliberately over-allocate to speculatively avoid frequent allocations.
1209    /// After calling `reserve_exact`, capacity will be greater than or equal to
1210    /// `self.len() + additional`. Does nothing if the capacity is already
1211    /// sufficient.
1212    ///
1213    /// [`reserve`]: String::reserve
1214    ///
1215    /// # Panics
1216    ///
1217    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
1218    ///
1219    /// # Examples
1220    ///
1221    /// Basic usage:
1222    ///
1223    /// ```
1224    /// let mut s = String::new();
1225    ///
1226    /// s.reserve_exact(10);
1227    ///
1228    /// assert!(s.capacity() >= 10);
1229    /// ```
1230    ///
1231    /// This might not actually increase the capacity:
1232    ///
1233    /// ```
1234    /// let mut s = String::with_capacity(10);
1235    /// s.push('a');
1236    /// s.push('b');
1237    ///
1238    /// // s now has a length of 2 and a capacity of at least 10
1239    /// let capacity = s.capacity();
1240    /// assert_eq!(2, s.len());
1241    /// assert!(capacity >= 10);
1242    ///
1243    /// // Since we already have at least an extra 8 capacity, calling this...
1244    /// s.reserve_exact(8);
1245    ///
1246    /// // ... doesn't actually increase.
1247    /// assert_eq!(capacity, s.capacity());
1248    /// ```
1249    #[cfg(not(no_global_oom_handling))]
1250    #[inline]
1251    #[stable(feature = "rust1", since = "1.0.0")]
1252    pub fn reserve_exact(&mut self, additional: usize) {
1253        self.vec.reserve_exact(additional)
1254    }
1255
1256    /// Tries to reserve capacity for at least `additional` bytes more than the
1257    /// current length. The allocator may reserve more space to speculatively
1258    /// avoid frequent allocations. After calling `try_reserve`, capacity will be
1259    /// greater than or equal to `self.len() + additional` if it returns
1260    /// `Ok(())`. Does nothing if capacity is already sufficient. This method
1261    /// preserves the contents even if an error occurs.
1262    ///
1263    /// # Errors
1264    ///
1265    /// If the capacity overflows, or the allocator reports a failure, then an error
1266    /// is returned.
1267    ///
1268    /// # Examples
1269    ///
1270    /// ```
1271    /// use std::collections::TryReserveError;
1272    ///
1273    /// fn process_data(data: &str) -> Result<String, TryReserveError> {
1274    ///     let mut output = String::new();
1275    ///
1276    ///     // Pre-reserve the memory, exiting if we can't
1277    ///     output.try_reserve(data.len())?;
1278    ///
1279    ///     // Now we know this can't OOM in the middle of our complex work
1280    ///     output.push_str(data);
1281    ///
1282    ///     Ok(output)
1283    /// }
1284    /// # process_data("rust").expect("why is the test harness OOMing on 4 bytes?");
1285    /// ```
1286    #[stable(feature = "try_reserve", since = "1.57.0")]
1287    pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
1288        self.vec.try_reserve(additional)
1289    }
1290
1291    /// Tries to reserve the minimum capacity for at least `additional` bytes
1292    /// more than the current length. Unlike [`try_reserve`], this will not
1293    /// deliberately over-allocate to speculatively avoid frequent allocations.
1294    /// After calling `try_reserve_exact`, capacity will be greater than or
1295    /// equal to `self.len() + additional` if it returns `Ok(())`.
1296    /// Does nothing if the capacity is already sufficient.
1297    ///
1298    /// Note that the allocator may give the collection more space than it
1299    /// requests. Therefore, capacity can not be relied upon to be precisely
1300    /// minimal. Prefer [`try_reserve`] if future insertions are expected.
1301    ///
1302    /// [`try_reserve`]: String::try_reserve
1303    ///
1304    /// # Errors
1305    ///
1306    /// If the capacity overflows, or the allocator reports a failure, then an error
1307    /// is returned.
1308    ///
1309    /// # Examples
1310    ///
1311    /// ```
1312    /// use std::collections::TryReserveError;
1313    ///
1314    /// fn process_data(data: &str) -> Result<String, TryReserveError> {
1315    ///     let mut output = String::new();
1316    ///
1317    ///     // Pre-reserve the memory, exiting if we can't
1318    ///     output.try_reserve_exact(data.len())?;
1319    ///
1320    ///     // Now we know this can't OOM in the middle of our complex work
1321    ///     output.push_str(data);
1322    ///
1323    ///     Ok(output)
1324    /// }
1325    /// # process_data("rust").expect("why is the test harness OOMing on 4 bytes?");
1326    /// ```
1327    #[stable(feature = "try_reserve", since = "1.57.0")]
1328    pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
1329        self.vec.try_reserve_exact(additional)
1330    }
1331
1332    /// Shrinks the capacity of this `String` to match its length.
1333    ///
1334    /// # Examples
1335    ///
1336    /// ```
1337    /// let mut s = String::from("foo");
1338    ///
1339    /// s.reserve(100);
1340    /// assert!(s.capacity() >= 100);
1341    ///
1342    /// s.shrink_to_fit();
1343    /// assert_eq!(3, s.capacity());
1344    /// ```
1345    #[cfg(not(no_global_oom_handling))]
1346    #[inline]
1347    #[stable(feature = "rust1", since = "1.0.0")]
1348    pub fn shrink_to_fit(&mut self) {
1349        self.vec.shrink_to_fit()
1350    }
1351
1352    /// Shrinks the capacity of this `String` with a lower bound.
1353    ///
1354    /// The capacity will remain at least as large as both the length
1355    /// and the supplied value.
1356    ///
1357    /// If the current capacity is less than the lower limit, this is a no-op.
1358    ///
1359    /// # Examples
1360    ///
1361    /// ```
1362    /// let mut s = String::from("foo");
1363    ///
1364    /// s.reserve(100);
1365    /// assert!(s.capacity() >= 100);
1366    ///
1367    /// s.shrink_to(10);
1368    /// assert!(s.capacity() >= 10);
1369    /// s.shrink_to(0);
1370    /// assert!(s.capacity() >= 3);
1371    /// ```
1372    #[cfg(not(no_global_oom_handling))]
1373    #[inline]
1374    #[stable(feature = "shrink_to", since = "1.56.0")]
1375    pub fn shrink_to(&mut self, min_capacity: usize) {
1376        self.vec.shrink_to(min_capacity)
1377    }
1378
1379    /// Appends the given [`char`] to the end of this `String`.
1380    ///
1381    /// # Panics
1382    ///
1383    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
1384    ///
1385    /// # Examples
1386    ///
1387    /// ```
1388    /// let mut s = String::from("abc");
1389    ///
1390    /// s.push('1');
1391    /// s.push('2');
1392    /// s.push('3');
1393    ///
1394    /// assert_eq!("abc123", s);
1395    /// ```
1396    #[cfg(not(no_global_oom_handling))]
1397    #[inline]
1398    #[stable(feature = "rust1", since = "1.0.0")]
1399    pub fn push(&mut self, ch: char) {
1400        let len = self.len();
1401        let ch_len = ch.len_utf8();
1402        self.reserve(ch_len);
1403
1404        // SAFETY: Just reserved capacity for at least the length needed to encode `ch`.
1405        unsafe {
1406            core::char::encode_utf8_raw_unchecked(ch as u32, self.vec.as_mut_ptr().add(self.len()));
1407            self.vec.set_len(len + ch_len);
1408        }
1409    }
1410
1411    /// Returns a byte slice of this `String`'s contents.
1412    ///
1413    /// The inverse of this method is [`from_utf8`].
1414    ///
1415    /// [`from_utf8`]: String::from_utf8
1416    ///
1417    /// # Examples
1418    ///
1419    /// ```
1420    /// let s = String::from("hello");
1421    ///
1422    /// assert_eq!(&[104, 101, 108, 108, 111], s.as_bytes());
1423    /// ```
1424    #[inline]
1425    #[must_use]
1426    #[stable(feature = "rust1", since = "1.0.0")]
1427    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1428    pub const fn as_bytes(&self) -> &[u8] {
1429        self.vec.as_slice()
1430    }
1431
1432    /// Shortens this `String` to the specified length.
1433    ///
1434    /// If `new_len` is greater than or equal to the string's current length, this has no
1435    /// effect.
1436    ///
1437    /// Note that this method has no effect on the allocated capacity
1438    /// of the string
1439    ///
1440    /// # Panics
1441    ///
1442    /// Panics if `new_len` does not lie on a [`char`] boundary.
1443    ///
1444    /// # Examples
1445    ///
1446    /// ```
1447    /// let mut s = String::from("hello");
1448    ///
1449    /// s.truncate(2);
1450    ///
1451    /// assert_eq!("he", s);
1452    /// ```
1453    #[inline]
1454    #[stable(feature = "rust1", since = "1.0.0")]
1455    #[track_caller]
1456    pub fn truncate(&mut self, new_len: usize) {
1457        if new_len <= self.len() {
1458            assert!(self.is_char_boundary(new_len));
1459            self.vec.truncate(new_len)
1460        }
1461    }
1462
1463    /// Removes the last character from the string buffer and returns it.
1464    ///
1465    /// Returns [`None`] if this `String` is empty.
1466    ///
1467    /// # Examples
1468    ///
1469    /// ```
1470    /// let mut s = String::from("abč");
1471    ///
1472    /// assert_eq!(s.pop(), Some('č'));
1473    /// assert_eq!(s.pop(), Some('b'));
1474    /// assert_eq!(s.pop(), Some('a'));
1475    ///
1476    /// assert_eq!(s.pop(), None);
1477    /// ```
1478    #[inline]
1479    #[stable(feature = "rust1", since = "1.0.0")]
1480    pub fn pop(&mut self) -> Option<char> {
1481        let ch = self.chars().rev().next()?;
1482        let newlen = self.len() - ch.len_utf8();
1483        unsafe {
1484            self.vec.set_len(newlen);
1485        }
1486        Some(ch)
1487    }
1488
1489    /// Removes a [`char`] from this `String` at byte position `idx` and returns it.
1490    ///
1491    /// Copies all bytes after the removed char to new positions.
1492    ///
1493    /// Note that calling this in a loop can result in quadratic behavior.
1494    ///
1495    /// # Panics
1496    ///
1497    /// Panics if `idx` is larger than or equal to the `String`'s length,
1498    /// or if it does not lie on a [`char`] boundary.
1499    ///
1500    /// # Examples
1501    ///
1502    /// ```
1503    /// let mut s = String::from("abç");
1504    ///
1505    /// assert_eq!(s.remove(0), 'a');
1506    /// assert_eq!(s.remove(1), 'ç');
1507    /// assert_eq!(s.remove(0), 'b');
1508    /// ```
1509    #[inline]
1510    #[stable(feature = "rust1", since = "1.0.0")]
1511    #[track_caller]
1512    #[rustc_confusables("delete", "take")]
1513    pub fn remove(&mut self, idx: usize) -> char {
1514        let ch = match self[idx..].chars().next() {
1515            Some(ch) => ch,
1516            None => panic!("cannot remove a char from the end of a string"),
1517        };
1518
1519        let next = idx + ch.len_utf8();
1520        let len = self.len();
1521        unsafe {
1522            ptr::copy(self.vec.as_ptr().add(next), self.vec.as_mut_ptr().add(idx), len - next);
1523            self.vec.set_len(len - (next - idx));
1524        }
1525        ch
1526    }
1527
1528    /// Remove all matches of pattern `pat` in the `String`.
1529    ///
1530    /// # Examples
1531    ///
1532    /// ```
1533    /// #![feature(string_remove_matches)]
1534    /// let mut s = String::from("Trees are not green, the sky is not blue.");
1535    /// s.remove_matches("not ");
1536    /// assert_eq!("Trees are green, the sky is blue.", s);
1537    /// ```
1538    ///
1539    /// Matches will be detected and removed iteratively, so in cases where
1540    /// patterns overlap, only the first pattern will be removed:
1541    ///
1542    /// ```
1543    /// #![feature(string_remove_matches)]
1544    /// let mut s = String::from("banana");
1545    /// s.remove_matches("ana");
1546    /// assert_eq!("bna", s);
1547    /// ```
1548    #[cfg(not(no_global_oom_handling))]
1549    #[unstable(feature = "string_remove_matches", reason = "new API", issue = "72826")]
1550    pub fn remove_matches<P: Pattern>(&mut self, pat: P) {
1551        use core::str::pattern::Searcher;
1552
1553        let rejections = {
1554            let mut searcher = pat.into_searcher(self);
1555            // Per Searcher::next:
1556            //
1557            // A Match result needs to contain the whole matched pattern,
1558            // however Reject results may be split up into arbitrary many
1559            // adjacent fragments. Both ranges may have zero length.
1560            //
1561            // In practice the implementation of Searcher::next_match tends to
1562            // be more efficient, so we use it here and do some work to invert
1563            // matches into rejections since that's what we want to copy below.
1564            let mut front = 0;
1565            let rejections: Vec<_> = from_fn(|| {
1566                let (start, end) = searcher.next_match()?;
1567                let prev_front = front;
1568                front = end;
1569                Some((prev_front, start))
1570            })
1571            .collect();
1572            rejections.into_iter().chain(core::iter::once((front, self.len())))
1573        };
1574
1575        let mut len = 0;
1576        let ptr = self.vec.as_mut_ptr();
1577
1578        for (start, end) in rejections {
1579            let count = end - start;
1580            if start != len {
1581                // SAFETY: per Searcher::next:
1582                //
1583                // The stream of Match and Reject values up to a Done will
1584                // contain index ranges that are adjacent, non-overlapping,
1585                // covering the whole haystack, and laying on utf8
1586                // boundaries.
1587                unsafe {
1588                    ptr::copy(ptr.add(start), ptr.add(len), count);
1589                }
1590            }
1591            len += count;
1592        }
1593
1594        unsafe {
1595            self.vec.set_len(len);
1596        }
1597    }
1598
1599    /// Retains only the characters specified by the predicate.
1600    ///
1601    /// In other words, remove all characters `c` such that `f(c)` returns `false`.
1602    /// This method operates in place, visiting each character exactly once in the
1603    /// original order, and preserves the order of the retained characters.
1604    ///
1605    /// # Examples
1606    ///
1607    /// ```
1608    /// let mut s = String::from("f_o_ob_ar");
1609    ///
1610    /// s.retain(|c| c != '_');
1611    ///
1612    /// assert_eq!(s, "foobar");
1613    /// ```
1614    ///
1615    /// Because the elements are visited exactly once in the original order,
1616    /// external state may be used to decide which elements to keep.
1617    ///
1618    /// ```
1619    /// let mut s = String::from("abcde");
1620    /// let keep = [false, true, true, false, true];
1621    /// let mut iter = keep.iter();
1622    /// s.retain(|_| *iter.next().unwrap());
1623    /// assert_eq!(s, "bce");
1624    /// ```
1625    #[inline]
1626    #[stable(feature = "string_retain", since = "1.26.0")]
1627    pub fn retain<F>(&mut self, mut f: F)
1628    where
1629        F: FnMut(char) -> bool,
1630    {
1631        struct SetLenOnDrop<'a> {
1632            s: &'a mut String,
1633            idx: usize,
1634            del_bytes: usize,
1635        }
1636
1637        impl<'a> Drop for SetLenOnDrop<'a> {
1638            fn drop(&mut self) {
1639                let new_len = self.idx - self.del_bytes;
1640                debug_assert!(new_len <= self.s.len());
1641                unsafe { self.s.vec.set_len(new_len) };
1642            }
1643        }
1644
1645        let len = self.len();
1646        let mut guard = SetLenOnDrop { s: self, idx: 0, del_bytes: 0 };
1647
1648        while guard.idx < len {
1649            let ch =
1650                // SAFETY: `guard.idx` is positive-or-zero and less that len so the `get_unchecked`
1651                // is in bound. `self` is valid UTF-8 like string and the returned slice starts at
1652                // a unicode code point so the `Chars` always return one character.
1653                unsafe { guard.s.get_unchecked(guard.idx..len).chars().next().unwrap_unchecked() };
1654            let ch_len = ch.len_utf8();
1655
1656            if !f(ch) {
1657                guard.del_bytes += ch_len;
1658            } else if guard.del_bytes > 0 {
1659                // SAFETY: `guard.idx` is in bound and `guard.del_bytes` represent the number of
1660                // bytes that are erased from the string so the resulting `guard.idx -
1661                // guard.del_bytes` always represent a valid unicode code point.
1662                //
1663                // `guard.del_bytes` >= `ch.len_utf8()`, so taking a slice with `ch.len_utf8()` len
1664                // is safe.
1665                ch.encode_utf8(unsafe {
1666                    crate::slice::from_raw_parts_mut(
1667                        guard.s.as_mut_ptr().add(guard.idx - guard.del_bytes),
1668                        ch.len_utf8(),
1669                    )
1670                });
1671            }
1672
1673            // Point idx to the next char
1674            guard.idx += ch_len;
1675        }
1676
1677        drop(guard);
1678    }
1679
1680    /// Inserts a character into this `String` at byte position `idx`.
1681    ///
1682    /// Reallocates if `self.capacity()` is insufficient, which may involve copying all
1683    /// `self.capacity()` bytes. Makes space for the insertion by copying all bytes of
1684    /// `&self[idx..]` to new positions.
1685    ///
1686    /// Note that calling this in a loop can result in quadratic behavior.
1687    ///
1688    /// # Panics
1689    ///
1690    /// Panics if `idx` is larger than the `String`'s length, or if it does not
1691    /// lie on a [`char`] boundary.
1692    ///
1693    /// # Examples
1694    ///
1695    /// ```
1696    /// let mut s = String::with_capacity(3);
1697    ///
1698    /// s.insert(0, 'f');
1699    /// s.insert(1, 'o');
1700    /// s.insert(2, 'o');
1701    ///
1702    /// assert_eq!("foo", s);
1703    /// ```
1704    #[cfg(not(no_global_oom_handling))]
1705    #[inline]
1706    #[track_caller]
1707    #[stable(feature = "rust1", since = "1.0.0")]
1708    #[rustc_confusables("set")]
1709    pub fn insert(&mut self, idx: usize, ch: char) {
1710        assert!(self.is_char_boundary(idx));
1711
1712        let len = self.len();
1713        let ch_len = ch.len_utf8();
1714        self.reserve(ch_len);
1715
1716        // SAFETY: Move the bytes starting from `idx` to their new location `ch_len`
1717        // bytes ahead. This is safe because sufficient capacity was reserved, and `idx`
1718        // is a char boundary.
1719        unsafe {
1720            ptr::copy(
1721                self.vec.as_ptr().add(idx),
1722                self.vec.as_mut_ptr().add(idx + ch_len),
1723                len - idx,
1724            );
1725        }
1726
1727        // SAFETY: Encode the character into the vacated region if `idx != len`,
1728        // or into the uninitialized spare capacity otherwise.
1729        unsafe {
1730            core::char::encode_utf8_raw_unchecked(ch as u32, self.vec.as_mut_ptr().add(idx));
1731        }
1732
1733        // SAFETY: Update the length to include the newly added bytes.
1734        unsafe {
1735            self.vec.set_len(len + ch_len);
1736        }
1737    }
1738
1739    /// Inserts a string slice into this `String` at byte position `idx`.
1740    ///
1741    /// Reallocates if `self.capacity()` is insufficient, which may involve copying all
1742    /// `self.capacity()` bytes. Makes space for the insertion by copying all bytes of
1743    /// `&self[idx..]` to new positions.
1744    ///
1745    /// Note that calling this in a loop can result in quadratic behavior.
1746    ///
1747    /// # Panics
1748    ///
1749    /// Panics if `idx` is larger than the `String`'s length, or if it does not
1750    /// lie on a [`char`] boundary.
1751    ///
1752    /// # Examples
1753    ///
1754    /// ```
1755    /// let mut s = String::from("bar");
1756    ///
1757    /// s.insert_str(0, "foo");
1758    ///
1759    /// assert_eq!("foobar", s);
1760    /// ```
1761    #[cfg(not(no_global_oom_handling))]
1762    #[inline]
1763    #[track_caller]
1764    #[stable(feature = "insert_str", since = "1.16.0")]
1765    #[rustc_diagnostic_item = "string_insert_str"]
1766    pub fn insert_str(&mut self, idx: usize, string: &str) {
1767        assert!(self.is_char_boundary(idx));
1768
1769        let len = self.len();
1770        let amt = string.len();
1771        self.reserve(amt);
1772
1773        // SAFETY: Move the bytes starting from `idx` to their new location `amt` bytes
1774        // ahead. This is safe because sufficient capacity was just reserved, and `idx`
1775        // is a char boundary.
1776        unsafe {
1777            ptr::copy(self.vec.as_ptr().add(idx), self.vec.as_mut_ptr().add(idx + amt), len - idx);
1778        }
1779
1780        // SAFETY: Copy the new string slice into the vacated region if `idx != len`,
1781        // or into the uninitialized spare capacity otherwise. The borrow checker
1782        // ensures that the source and destination do not overlap.
1783        unsafe {
1784            ptr::copy_nonoverlapping(string.as_ptr(), self.vec.as_mut_ptr().add(idx), amt);
1785        }
1786
1787        // SAFETY: Update the length to include the newly added bytes.
1788        unsafe {
1789            self.vec.set_len(len + amt);
1790        }
1791    }
1792
1793    /// Returns a mutable reference to the contents of this `String`.
1794    ///
1795    /// # Safety
1796    ///
1797    /// This function is unsafe because the returned `&mut Vec` allows writing
1798    /// bytes which are not valid UTF-8. If this constraint is violated, using
1799    /// the original `String` after dropping the `&mut Vec` may violate memory
1800    /// safety, as the rest of the standard library assumes that `String`s are
1801    /// valid UTF-8.
1802    ///
1803    /// # Examples
1804    ///
1805    /// ```
1806    /// let mut s = String::from("hello");
1807    ///
1808    /// unsafe {
1809    ///     let vec = s.as_mut_vec();
1810    ///     assert_eq!(&[104, 101, 108, 108, 111][..], &vec[..]);
1811    ///
1812    ///     vec.reverse();
1813    /// }
1814    /// assert_eq!(s, "olleh");
1815    /// ```
1816    #[inline]
1817    #[stable(feature = "rust1", since = "1.0.0")]
1818    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1819    pub const unsafe fn as_mut_vec(&mut self) -> &mut Vec<u8> {
1820        &mut self.vec
1821    }
1822
1823    /// Returns the length of this `String`, in bytes, not [`char`]s or
1824    /// graphemes. In other words, it might not be what a human considers the
1825    /// length of the string.
1826    ///
1827    /// # Examples
1828    ///
1829    /// ```
1830    /// let a = String::from("foo");
1831    /// assert_eq!(a.len(), 3);
1832    ///
1833    /// let fancy_f = String::from("ƒoo");
1834    /// assert_eq!(fancy_f.len(), 4);
1835    /// assert_eq!(fancy_f.chars().count(), 3);
1836    /// ```
1837    #[inline]
1838    #[must_use]
1839    #[stable(feature = "rust1", since = "1.0.0")]
1840    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1841    #[rustc_confusables("length", "size")]
1842    #[rustc_no_implicit_autorefs]
1843    pub const fn len(&self) -> usize {
1844        self.vec.len()
1845    }
1846
1847    /// Returns `true` if this `String` has a length of zero, and `false` otherwise.
1848    ///
1849    /// # Examples
1850    ///
1851    /// ```
1852    /// let mut v = String::new();
1853    /// assert!(v.is_empty());
1854    ///
1855    /// v.push('a');
1856    /// assert!(!v.is_empty());
1857    /// ```
1858    #[inline]
1859    #[must_use]
1860    #[stable(feature = "rust1", since = "1.0.0")]
1861    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1862    #[rustc_no_implicit_autorefs]
1863    pub const fn is_empty(&self) -> bool {
1864        self.len() == 0
1865    }
1866
1867    /// Splits the string into two at the given byte index.
1868    ///
1869    /// Returns a newly allocated `String`. `self` contains bytes `[0, at)`, and
1870    /// the returned `String` contains bytes `[at, len)`. `at` must be on the
1871    /// boundary of a UTF-8 code point.
1872    ///
1873    /// Note that the capacity of `self` does not change.
1874    ///
1875    /// # Panics
1876    ///
1877    /// Panics if `at` is not on a `UTF-8` code point boundary, or if it is beyond the last
1878    /// code point of the string.
1879    ///
1880    /// # Examples
1881    ///
1882    /// ```
1883    /// # fn main() {
1884    /// let mut hello = String::from("Hello, World!");
1885    /// let world = hello.split_off(7);
1886    /// assert_eq!(hello, "Hello, ");
1887    /// assert_eq!(world, "World!");
1888    /// # }
1889    /// ```
1890    #[cfg(not(no_global_oom_handling))]
1891    #[inline]
1892    #[track_caller]
1893    #[stable(feature = "string_split_off", since = "1.16.0")]
1894    #[must_use = "use `.truncate()` if you don't need the other half"]
1895    pub fn split_off(&mut self, at: usize) -> String {
1896        assert!(self.is_char_boundary(at));
1897        let other = self.vec.split_off(at);
1898        unsafe { String::from_utf8_unchecked(other) }
1899    }
1900
1901    /// Truncates this `String`, removing all contents.
1902    ///
1903    /// While this means the `String` will have a length of zero, it does not
1904    /// touch its capacity.
1905    ///
1906    /// # Examples
1907    ///
1908    /// ```
1909    /// let mut s = String::from("foo");
1910    ///
1911    /// s.clear();
1912    ///
1913    /// assert!(s.is_empty());
1914    /// assert_eq!(0, s.len());
1915    /// assert_eq!(3, s.capacity());
1916    /// ```
1917    #[inline]
1918    #[stable(feature = "rust1", since = "1.0.0")]
1919    pub fn clear(&mut self) {
1920        self.vec.clear()
1921    }
1922
1923    /// Removes the specified range from the string in bulk, returning all
1924    /// removed characters as an iterator.
1925    ///
1926    /// The returned iterator keeps a mutable borrow on the string to optimize
1927    /// its implementation.
1928    ///
1929    /// # Panics
1930    ///
1931    /// Panics if the range has `start_bound > end_bound`, or, if the range is
1932    /// bounded on either end and does not lie on a [`char`] boundary.
1933    ///
1934    /// # Leaking
1935    ///
1936    /// If the returned iterator goes out of scope without being dropped (due to
1937    /// [`core::mem::forget`], for example), the string may still contain a copy
1938    /// of any drained characters, or may have lost characters arbitrarily,
1939    /// including characters outside the range.
1940    ///
1941    /// # Examples
1942    ///
1943    /// ```
1944    /// let mut s = String::from("α is alpha, β is beta");
1945    /// let beta_offset = s.find('β').unwrap_or(s.len());
1946    ///
1947    /// // Remove the range up until the β from the string
1948    /// let t: String = s.drain(..beta_offset).collect();
1949    /// assert_eq!(t, "α is alpha, ");
1950    /// assert_eq!(s, "β is beta");
1951    ///
1952    /// // A full range clears the string, like `clear()` does
1953    /// s.drain(..);
1954    /// assert_eq!(s, "");
1955    /// ```
1956    #[stable(feature = "drain", since = "1.6.0")]
1957    #[track_caller]
1958    pub fn drain<R>(&mut self, range: R) -> Drain<'_>
1959    where
1960        R: RangeBounds<usize>,
1961    {
1962        // Memory safety
1963        //
1964        // The String version of Drain does not have the memory safety issues
1965        // of the vector version. The data is just plain bytes.
1966        // Because the range removal happens in Drop, if the Drain iterator is leaked,
1967        // the removal will not happen.
1968        let Range { start, end } = slice::range(range, ..self.len());
1969        assert!(self.is_char_boundary(start));
1970        assert!(self.is_char_boundary(end));
1971
1972        // Take out two simultaneous borrows. The &mut String won't be accessed
1973        // until iteration is over, in Drop.
1974        let self_ptr = self as *mut _;
1975        // SAFETY: `slice::range` and `is_char_boundary` do the appropriate bounds checks.
1976        let chars_iter = unsafe { self.get_unchecked(start..end) }.chars();
1977
1978        Drain { start, end, iter: chars_iter, string: self_ptr }
1979    }
1980
1981    /// Converts a `String` into an iterator over the [`char`]s of the string.
1982    ///
1983    /// As a string consists of valid UTF-8, we can iterate through a string
1984    /// by [`char`]. This method returns such an iterator.
1985    ///
1986    /// It's important to remember that [`char`] represents a Unicode Scalar
1987    /// Value, and might not match your idea of what a 'character' is. Iteration
1988    /// over grapheme clusters may be what you actually want. That functionality
1989    /// is not provided by Rust's standard library, check crates.io instead.
1990    ///
1991    /// # Examples
1992    ///
1993    /// Basic usage:
1994    ///
1995    /// ```
1996    /// #![feature(string_into_chars)]
1997    ///
1998    /// let word = String::from("goodbye");
1999    ///
2000    /// let mut chars = word.into_chars();
2001    ///
2002    /// assert_eq!(Some('g'), chars.next());
2003    /// assert_eq!(Some('o'), chars.next());
2004    /// assert_eq!(Some('o'), chars.next());
2005    /// assert_eq!(Some('d'), chars.next());
2006    /// assert_eq!(Some('b'), chars.next());
2007    /// assert_eq!(Some('y'), chars.next());
2008    /// assert_eq!(Some('e'), chars.next());
2009    ///
2010    /// assert_eq!(None, chars.next());
2011    /// ```
2012    ///
2013    /// Remember, [`char`]s might not match your intuition about characters:
2014    ///
2015    /// ```
2016    /// #![feature(string_into_chars)]
2017    ///
2018    /// let y = String::from("y̆");
2019    ///
2020    /// let mut chars = y.into_chars();
2021    ///
2022    /// assert_eq!(Some('y'), chars.next()); // not 'y̆'
2023    /// assert_eq!(Some('\u{0306}'), chars.next());
2024    ///
2025    /// assert_eq!(None, chars.next());
2026    /// ```
2027    ///
2028    /// [`char`]: prim@char
2029    #[inline]
2030    #[must_use = "`self` will be dropped if the result is not used"]
2031    #[unstable(feature = "string_into_chars", issue = "133125")]
2032    pub fn into_chars(self) -> IntoChars {
2033        IntoChars { bytes: self.into_bytes().into_iter() }
2034    }
2035
2036    /// Removes the specified range in the string,
2037    /// and replaces it with the given string.
2038    /// The given string doesn't need to be the same length as the range.
2039    ///
2040    /// # Panics
2041    ///
2042    /// Panics if the range has `start_bound > end_bound`, or, if the range is
2043    /// bounded on either end and does not lie on a [`char`] boundary.
2044    ///
2045    /// # Examples
2046    ///
2047    /// ```
2048    /// let mut s = String::from("α is alpha, β is beta");
2049    /// let beta_offset = s.find('β').unwrap_or(s.len());
2050    ///
2051    /// // Replace the range up until the β from the string
2052    /// s.replace_range(..beta_offset, "Α is capital alpha; ");
2053    /// assert_eq!(s, "Α is capital alpha; β is beta");
2054    /// ```
2055    #[cfg(not(no_global_oom_handling))]
2056    #[stable(feature = "splice", since = "1.27.0")]
2057    #[track_caller]
2058    pub fn replace_range<R>(&mut self, range: R, replace_with: &str)
2059    where
2060        R: RangeBounds<usize>,
2061    {
2062        // Memory safety
2063        //
2064        // Replace_range does not have the memory safety issues of a vector Splice.
2065        // of the vector version. The data is just plain bytes.
2066
2067        // WARNING: Inlining this variable would be unsound (#81138)
2068        let start = range.start_bound();
2069        match start {
2070            Included(&n) => assert!(self.is_char_boundary(n)),
2071            Excluded(&n) => assert!(self.is_char_boundary(n + 1)),
2072            Unbounded => {}
2073        };
2074        // WARNING: Inlining this variable would be unsound (#81138)
2075        let end = range.end_bound();
2076        match end {
2077            Included(&n) => assert!(self.is_char_boundary(n + 1)),
2078            Excluded(&n) => assert!(self.is_char_boundary(n)),
2079            Unbounded => {}
2080        };
2081
2082        // Using `range` again would be unsound (#81138)
2083        // We assume the bounds reported by `range` remain the same, but
2084        // an adversarial implementation could change between calls
2085        unsafe { self.as_mut_vec() }.splice((start, end), replace_with.bytes());
2086    }
2087
2088    /// Replaces the leftmost occurrence of a pattern with another string, in-place.
2089    ///
2090    /// This method can be preferred over [`string = string.replacen(..., 1);`][replacen],
2091    /// as it can use the `String`'s existing capacity to prevent a reallocation if
2092    /// sufficient space is available.
2093    ///
2094    /// # Examples
2095    ///
2096    /// Basic usage:
2097    ///
2098    /// ```
2099    /// #![feature(string_replace_in_place)]
2100    ///
2101    /// let mut s = String::from("Test Results: ❌❌❌");
2102    ///
2103    /// // Replace the leftmost ❌ with a ✅
2104    /// s.replace_first('❌', "✅");
2105    /// assert_eq!(s, "Test Results: ✅❌❌");
2106    /// ```
2107    ///
2108    /// [replacen]: ../../std/primitive.str.html#method.replacen
2109    #[cfg(not(no_global_oom_handling))]
2110    #[unstable(feature = "string_replace_in_place", issue = "147949")]
2111    pub fn replace_first<P: Pattern>(&mut self, from: P, to: &str) {
2112        let range = match self.match_indices(from).next() {
2113            Some((start, match_str)) => start..start + match_str.len(),
2114            None => return,
2115        };
2116
2117        self.replace_range(range, to);
2118    }
2119
2120    /// Replaces the rightmost occurrence of a pattern with another string, in-place.
2121    ///
2122    /// # Examples
2123    ///
2124    /// Basic usage:
2125    ///
2126    /// ```
2127    /// #![feature(string_replace_in_place)]
2128    ///
2129    /// let mut s = String::from("Test Results: ❌❌❌");
2130    ///
2131    /// // Replace the rightmost ❌ with a ✅
2132    /// s.replace_last('❌', "✅");
2133    /// assert_eq!(s, "Test Results: ❌❌✅");
2134    /// ```
2135    #[cfg(not(no_global_oom_handling))]
2136    #[unstable(feature = "string_replace_in_place", issue = "147949")]
2137    pub fn replace_last<P: Pattern>(&mut self, from: P, to: &str)
2138    where
2139        for<'a> P::Searcher<'a>: core::str::pattern::ReverseSearcher<'a>,
2140    {
2141        let range = match self.rmatch_indices(from).next() {
2142            Some((start, match_str)) => start..start + match_str.len(),
2143            None => return,
2144        };
2145
2146        self.replace_range(range, to);
2147    }
2148
2149    /// Converts this `String` into a <code>[Box]<[str]></code>.
2150    ///
2151    /// Before doing the conversion, this method discards excess capacity like [`shrink_to_fit`].
2152    /// Note that this call may reallocate and copy the bytes of the string.
2153    ///
2154    /// [`shrink_to_fit`]: String::shrink_to_fit
2155    /// [str]: prim@str "str"
2156    ///
2157    /// # Examples
2158    ///
2159    /// ```
2160    /// let s = String::from("hello");
2161    ///
2162    /// let b = s.into_boxed_str();
2163    /// ```
2164    #[cfg(not(no_global_oom_handling))]
2165    #[stable(feature = "box_str", since = "1.4.0")]
2166    #[must_use = "`self` will be dropped if the result is not used"]
2167    #[inline]
2168    pub fn into_boxed_str(self) -> Box<str> {
2169        let slice = self.vec.into_boxed_slice();
2170        unsafe { from_boxed_utf8_unchecked(slice) }
2171    }
2172
2173    /// Consumes and leaks the `String`, returning a mutable reference to the contents,
2174    /// `&'a mut str`.
2175    ///
2176    /// The caller has free choice over the returned lifetime, including `'static`. Indeed,
2177    /// this function is ideally used for data that lives for the remainder of the program's life,
2178    /// as dropping the returned reference will cause a memory leak.
2179    ///
2180    /// It does not reallocate or shrink the `String`, so the leaked allocation may include unused
2181    /// capacity that is not part of the returned slice. If you want to discard excess capacity,
2182    /// call [`into_boxed_str`], and then [`Box::leak`] instead. However, keep in mind that
2183    /// trimming the capacity may result in a reallocation and copy.
2184    ///
2185    /// [`into_boxed_str`]: Self::into_boxed_str
2186    ///
2187    /// # Examples
2188    ///
2189    /// ```
2190    /// let x = String::from("bucket");
2191    /// let static_ref: &'static mut str = x.leak();
2192    /// assert_eq!(static_ref, "bucket");
2193    /// # // FIXME(https://github.com/rust-lang/miri/issues/3670):
2194    /// # // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak.
2195    /// # drop(unsafe { Box::from_raw(static_ref) });
2196    /// ```
2197    #[stable(feature = "string_leak", since = "1.72.0")]
2198    #[inline]
2199    pub fn leak<'a>(self) -> &'a mut str {
2200        let slice = self.vec.leak();
2201        unsafe { from_utf8_unchecked_mut(slice) }
2202    }
2203}
2204
2205impl FromUtf8Error {
2206    /// Returns a slice of [`u8`]s bytes that were attempted to convert to a `String`.
2207    ///
2208    /// # Examples
2209    ///
2210    /// ```
2211    /// // some invalid bytes, in a vector
2212    /// let bytes = vec![0, 159];
2213    ///
2214    /// let value = String::from_utf8(bytes);
2215    ///
2216    /// assert_eq!(&[0, 159], value.unwrap_err().as_bytes());
2217    /// ```
2218    #[must_use]
2219    #[stable(feature = "from_utf8_error_as_bytes", since = "1.26.0")]
2220    pub fn as_bytes(&self) -> &[u8] {
2221        &self.bytes[..]
2222    }
2223
2224    /// Converts the bytes into a `String` lossily, substituting invalid UTF-8
2225    /// sequences with replacement characters.
2226    ///
2227    /// See [`String::from_utf8_lossy`] for more details on replacement of
2228    /// invalid sequences, and [`String::from_utf8_lossy_owned`] for the
2229    /// `String` function which corresponds to this function.
2230    ///
2231    /// # Examples
2232    ///
2233    /// ```
2234    /// #![feature(string_from_utf8_lossy_owned)]
2235    /// // some invalid bytes
2236    /// let input: Vec<u8> = b"Hello \xF0\x90\x80World".into();
2237    /// let output = String::from_utf8(input).unwrap_or_else(|e| e.into_utf8_lossy());
2238    ///
2239    /// assert_eq!(String::from("Hello �World"), output);
2240    /// ```
2241    #[must_use]
2242    #[cfg(not(no_global_oom_handling))]
2243    #[unstable(feature = "string_from_utf8_lossy_owned", issue = "129436")]
2244    pub fn into_utf8_lossy(self) -> String {
2245        const REPLACEMENT: &str = "\u{FFFD}";
2246
2247        let mut res = {
2248            let mut v = Vec::with_capacity(self.bytes.len());
2249
2250            // `Utf8Error::valid_up_to` returns the maximum index of validated
2251            // UTF-8 bytes. Copy the valid bytes into the output buffer.
2252            v.extend_from_slice(&self.bytes[..self.error.valid_up_to()]);
2253
2254            // SAFETY: This is safe because the only bytes present in the buffer
2255            // were validated as UTF-8 by the call to `String::from_utf8` which
2256            // produced this `FromUtf8Error`.
2257            unsafe { String::from_utf8_unchecked(v) }
2258        };
2259
2260        let iter = self.bytes[self.error.valid_up_to()..].utf8_chunks();
2261
2262        for chunk in iter {
2263            res.push_str(chunk.valid());
2264            if !chunk.invalid().is_empty() {
2265                res.push_str(REPLACEMENT);
2266            }
2267        }
2268
2269        res
2270    }
2271
2272    /// Returns the bytes that were attempted to convert to a `String`.
2273    ///
2274    /// This method is carefully constructed to avoid allocation. It will
2275    /// consume the error, moving out the bytes, so that a copy of the bytes
2276    /// does not need to be made.
2277    ///
2278    /// # Examples
2279    ///
2280    /// ```
2281    /// // some invalid bytes, in a vector
2282    /// let bytes = vec![0, 159];
2283    ///
2284    /// let value = String::from_utf8(bytes);
2285    ///
2286    /// assert_eq!(vec![0, 159], value.unwrap_err().into_bytes());
2287    /// ```
2288    #[must_use = "`self` will be dropped if the result is not used"]
2289    #[stable(feature = "rust1", since = "1.0.0")]
2290    pub fn into_bytes(self) -> Vec<u8> {
2291        self.bytes
2292    }
2293
2294    /// Fetch a `Utf8Error` to get more details about the conversion failure.
2295    ///
2296    /// The [`Utf8Error`] type provided by [`std::str`] represents an error that may
2297    /// occur when converting a slice of [`u8`]s to a [`&str`]. In this sense, it's
2298    /// an analogue to `FromUtf8Error`. See its documentation for more details
2299    /// on using it.
2300    ///
2301    /// [`std::str`]: core::str "std::str"
2302    /// [`&str`]: prim@str "&str"
2303    ///
2304    /// # Examples
2305    ///
2306    /// ```
2307    /// // some invalid bytes, in a vector
2308    /// let bytes = vec![0, 159];
2309    ///
2310    /// let error = String::from_utf8(bytes).unwrap_err().utf8_error();
2311    ///
2312    /// // the first byte is invalid here
2313    /// assert_eq!(1, error.valid_up_to());
2314    /// ```
2315    #[must_use]
2316    #[stable(feature = "rust1", since = "1.0.0")]
2317    pub fn utf8_error(&self) -> Utf8Error {
2318        self.error
2319    }
2320}
2321
2322#[stable(feature = "rust1", since = "1.0.0")]
2323impl fmt::Display for FromUtf8Error {
2324    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2325        fmt::Display::fmt(&self.error, f)
2326    }
2327}
2328
2329#[stable(feature = "rust1", since = "1.0.0")]
2330impl fmt::Display for FromUtf16Error {
2331    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2332        fmt::Display::fmt("invalid utf-16: lone surrogate found", f)
2333    }
2334}
2335
2336#[stable(feature = "rust1", since = "1.0.0")]
2337impl Error for FromUtf8Error {}
2338
2339#[stable(feature = "rust1", since = "1.0.0")]
2340impl Error for FromUtf16Error {}
2341
2342#[cfg(not(no_global_oom_handling))]
2343#[stable(feature = "rust1", since = "1.0.0")]
2344impl Clone for String {
2345    fn clone(&self) -> Self {
2346        String { vec: self.vec.clone() }
2347    }
2348
2349    /// Clones the contents of `source` into `self`.
2350    ///
2351    /// This method is preferred over simply assigning `source.clone()` to `self`,
2352    /// as it avoids reallocation if possible.
2353    fn clone_from(&mut self, source: &Self) {
2354        self.vec.clone_from(&source.vec);
2355    }
2356}
2357
2358#[cfg(not(no_global_oom_handling))]
2359#[stable(feature = "rust1", since = "1.0.0")]
2360impl FromIterator<char> for String {
2361    fn from_iter<I: IntoIterator<Item = char>>(iter: I) -> String {
2362        let mut buf = String::new();
2363        buf.extend(iter);
2364        buf
2365    }
2366}
2367
2368#[cfg(not(no_global_oom_handling))]
2369#[stable(feature = "string_from_iter_by_ref", since = "1.17.0")]
2370impl<'a> FromIterator<&'a char> for String {
2371    fn from_iter<I: IntoIterator<Item = &'a char>>(iter: I) -> String {
2372        let mut buf = String::new();
2373        buf.extend(iter);
2374        buf
2375    }
2376}
2377
2378#[cfg(not(no_global_oom_handling))]
2379#[stable(feature = "rust1", since = "1.0.0")]
2380impl<'a> FromIterator<&'a str> for String {
2381    fn from_iter<I: IntoIterator<Item = &'a str>>(iter: I) -> String {
2382        let mut buf = String::new();
2383        buf.extend(iter);
2384        buf
2385    }
2386}
2387
2388#[cfg(not(no_global_oom_handling))]
2389#[stable(feature = "extend_string", since = "1.4.0")]
2390impl FromIterator<String> for String {
2391    fn from_iter<I: IntoIterator<Item = String>>(iter: I) -> String {
2392        let mut iterator = iter.into_iter();
2393
2394        // Because we're iterating over `String`s, we can avoid at least
2395        // one allocation by getting the first string from the iterator
2396        // and appending to it all the subsequent strings.
2397        match iterator.next() {
2398            None => String::new(),
2399            Some(mut buf) => {
2400                buf.extend(iterator);
2401                buf
2402            }
2403        }
2404    }
2405}
2406
2407#[cfg(not(no_global_oom_handling))]
2408#[stable(feature = "box_str2", since = "1.45.0")]
2409impl<A: Allocator> FromIterator<Box<str, A>> for String {
2410    fn from_iter<I: IntoIterator<Item = Box<str, A>>>(iter: I) -> String {
2411        let mut buf = String::new();
2412        buf.extend(iter);
2413        buf
2414    }
2415}
2416
2417#[cfg(not(no_global_oom_handling))]
2418#[stable(feature = "herd_cows", since = "1.19.0")]
2419impl<'a> FromIterator<Cow<'a, str>> for String {
2420    fn from_iter<I: IntoIterator<Item = Cow<'a, str>>>(iter: I) -> String {
2421        let mut iterator = iter.into_iter();
2422
2423        // Because we're iterating over CoWs, we can (potentially) avoid at least
2424        // one allocation by getting the first item and appending to it all the
2425        // subsequent items.
2426        match iterator.next() {
2427            None => String::new(),
2428            Some(cow) => {
2429                let mut buf = cow.into_owned();
2430                buf.extend(iterator);
2431                buf
2432            }
2433        }
2434    }
2435}
2436
2437#[cfg(not(no_global_oom_handling))]
2438#[unstable(feature = "ascii_char", issue = "110998")]
2439impl FromIterator<core::ascii::Char> for String {
2440    fn from_iter<T: IntoIterator<Item = core::ascii::Char>>(iter: T) -> Self {
2441        let buf = iter.into_iter().map(core::ascii::Char::to_u8).collect();
2442        // SAFETY: `buf` is guaranteed to be valid UTF-8 because the `core::ascii::Char` type
2443        // only contains ASCII values (0x00-0x7F), which are valid UTF-8.
2444        unsafe { String::from_utf8_unchecked(buf) }
2445    }
2446}
2447
2448#[cfg(not(no_global_oom_handling))]
2449#[unstable(feature = "ascii_char", issue = "110998")]
2450impl<'a> FromIterator<&'a core::ascii::Char> for String {
2451    fn from_iter<T: IntoIterator<Item = &'a core::ascii::Char>>(iter: T) -> Self {
2452        let buf = iter.into_iter().copied().map(core::ascii::Char::to_u8).collect();
2453        // SAFETY: `buf` is guaranteed to be valid UTF-8 because the `core::ascii::Char` type
2454        // only contains ASCII values (0x00-0x7F), which are valid UTF-8.
2455        unsafe { String::from_utf8_unchecked(buf) }
2456    }
2457}
2458
2459#[cfg(not(no_global_oom_handling))]
2460#[stable(feature = "rust1", since = "1.0.0")]
2461impl Extend<char> for String {
2462    fn extend<I: IntoIterator<Item = char>>(&mut self, iter: I) {
2463        let iterator = iter.into_iter();
2464        let (lower_bound, _) = iterator.size_hint();
2465        self.reserve(lower_bound);
2466        iterator.for_each(move |c| self.push(c));
2467    }
2468
2469    #[inline]
2470    fn extend_one(&mut self, c: char) {
2471        self.push(c);
2472    }
2473
2474    #[inline]
2475    fn extend_reserve(&mut self, additional: usize) {
2476        self.reserve(additional);
2477    }
2478}
2479
2480#[cfg(not(no_global_oom_handling))]
2481#[stable(feature = "extend_ref", since = "1.2.0")]
2482impl<'a> Extend<&'a char> for String {
2483    fn extend<I: IntoIterator<Item = &'a char>>(&mut self, iter: I) {
2484        self.extend(iter.into_iter().cloned());
2485    }
2486
2487    #[inline]
2488    fn extend_one(&mut self, &c: &'a char) {
2489        self.push(c);
2490    }
2491
2492    #[inline]
2493    fn extend_reserve(&mut self, additional: usize) {
2494        self.reserve(additional);
2495    }
2496}
2497
2498#[cfg(not(no_global_oom_handling))]
2499#[stable(feature = "rust1", since = "1.0.0")]
2500impl<'a> Extend<&'a str> for String {
2501    fn extend<I: IntoIterator<Item = &'a str>>(&mut self, iter: I) {
2502        iter.into_iter().for_each(move |s| self.push_str(s));
2503    }
2504
2505    #[inline]
2506    fn extend_one(&mut self, s: &'a str) {
2507        self.push_str(s);
2508    }
2509}
2510
2511#[cfg(not(no_global_oom_handling))]
2512#[stable(feature = "box_str2", since = "1.45.0")]
2513impl<A: Allocator> Extend<Box<str, A>> for String {
2514    fn extend<I: IntoIterator<Item = Box<str, A>>>(&mut self, iter: I) {
2515        iter.into_iter().for_each(move |s| self.push_str(&s));
2516    }
2517}
2518
2519#[cfg(not(no_global_oom_handling))]
2520#[stable(feature = "extend_string", since = "1.4.0")]
2521impl Extend<String> for String {
2522    fn extend<I: IntoIterator<Item = String>>(&mut self, iter: I) {
2523        iter.into_iter().for_each(move |s| self.push_str(&s));
2524    }
2525
2526    #[inline]
2527    fn extend_one(&mut self, s: String) {
2528        self.push_str(&s);
2529    }
2530}
2531
2532#[cfg(not(no_global_oom_handling))]
2533#[stable(feature = "herd_cows", since = "1.19.0")]
2534impl<'a> Extend<Cow<'a, str>> for String {
2535    fn extend<I: IntoIterator<Item = Cow<'a, str>>>(&mut self, iter: I) {
2536        iter.into_iter().for_each(move |s| self.push_str(&s));
2537    }
2538
2539    #[inline]
2540    fn extend_one(&mut self, s: Cow<'a, str>) {
2541        self.push_str(&s);
2542    }
2543}
2544
2545#[cfg(not(no_global_oom_handling))]
2546#[unstable(feature = "ascii_char", issue = "110998")]
2547impl Extend<core::ascii::Char> for String {
2548    #[inline]
2549    fn extend<I: IntoIterator<Item = core::ascii::Char>>(&mut self, iter: I) {
2550        self.vec.extend(iter.into_iter().map(|c| c.to_u8()));
2551    }
2552
2553    #[inline]
2554    fn extend_one(&mut self, c: core::ascii::Char) {
2555        self.vec.push(c.to_u8());
2556    }
2557}
2558
2559#[cfg(not(no_global_oom_handling))]
2560#[unstable(feature = "ascii_char", issue = "110998")]
2561impl<'a> Extend<&'a core::ascii::Char> for String {
2562    #[inline]
2563    fn extend<I: IntoIterator<Item = &'a core::ascii::Char>>(&mut self, iter: I) {
2564        self.extend(iter.into_iter().cloned());
2565    }
2566
2567    #[inline]
2568    fn extend_one(&mut self, c: &'a core::ascii::Char) {
2569        self.vec.push(c.to_u8());
2570    }
2571}
2572
2573/// A convenience impl that delegates to the impl for `&str`.
2574///
2575/// # Examples
2576///
2577/// ```
2578/// assert_eq!(String::from("Hello world").find("world"), Some(6));
2579/// ```
2580#[unstable(
2581    feature = "pattern",
2582    reason = "API not fully fleshed out and ready to be stabilized",
2583    issue = "27721"
2584)]
2585impl<'b> Pattern for &'b String {
2586    type Searcher<'a> = <&'b str as Pattern>::Searcher<'a>;
2587
2588    fn into_searcher(self, haystack: &str) -> <&'b str as Pattern>::Searcher<'_> {
2589        self[..].into_searcher(haystack)
2590    }
2591
2592    #[inline]
2593    fn is_contained_in(self, haystack: &str) -> bool {
2594        self[..].is_contained_in(haystack)
2595    }
2596
2597    #[inline]
2598    fn is_prefix_of(self, haystack: &str) -> bool {
2599        self[..].is_prefix_of(haystack)
2600    }
2601
2602    #[inline]
2603    fn strip_prefix_of(self, haystack: &str) -> Option<&str> {
2604        self[..].strip_prefix_of(haystack)
2605    }
2606
2607    #[inline]
2608    fn is_suffix_of<'a>(self, haystack: &'a str) -> bool
2609    where
2610        Self::Searcher<'a>: core::str::pattern::ReverseSearcher<'a>,
2611    {
2612        self[..].is_suffix_of(haystack)
2613    }
2614
2615    #[inline]
2616    fn strip_suffix_of<'a>(self, haystack: &'a str) -> Option<&'a str>
2617    where
2618        Self::Searcher<'a>: core::str::pattern::ReverseSearcher<'a>,
2619    {
2620        self[..].strip_suffix_of(haystack)
2621    }
2622
2623    #[inline]
2624    fn as_utf8_pattern(&self) -> Option<Utf8Pattern<'_>> {
2625        Some(Utf8Pattern::StringPattern(self.as_bytes()))
2626    }
2627}
2628
2629macro_rules! impl_eq {
2630    ($lhs:ty, $rhs: ty) => {
2631        #[stable(feature = "rust1", since = "1.0.0")]
2632        #[allow(unused_lifetimes)]
2633        impl<'a, 'b> PartialEq<$rhs> for $lhs {
2634            #[inline]
2635            fn eq(&self, other: &$rhs) -> bool {
2636                PartialEq::eq(&self[..], &other[..])
2637            }
2638            #[inline]
2639            fn ne(&self, other: &$rhs) -> bool {
2640                PartialEq::ne(&self[..], &other[..])
2641            }
2642        }
2643
2644        #[stable(feature = "rust1", since = "1.0.0")]
2645        #[allow(unused_lifetimes)]
2646        impl<'a, 'b> PartialEq<$lhs> for $rhs {
2647            #[inline]
2648            fn eq(&self, other: &$lhs) -> bool {
2649                PartialEq::eq(&self[..], &other[..])
2650            }
2651            #[inline]
2652            fn ne(&self, other: &$lhs) -> bool {
2653                PartialEq::ne(&self[..], &other[..])
2654            }
2655        }
2656    };
2657}
2658
2659impl_eq! { String, str }
2660impl_eq! { String, &'a str }
2661#[cfg(not(no_global_oom_handling))]
2662impl_eq! { Cow<'a, str>, str }
2663#[cfg(not(no_global_oom_handling))]
2664impl_eq! { Cow<'a, str>, &'b str }
2665#[cfg(not(no_global_oom_handling))]
2666impl_eq! { Cow<'a, str>, String }
2667
2668#[stable(feature = "rust1", since = "1.0.0")]
2669#[rustc_const_unstable(feature = "const_default", issue = "143894")]
2670impl const Default for String {
2671    /// Creates an empty `String`.
2672    #[inline]
2673    fn default() -> String {
2674        String::new()
2675    }
2676}
2677
2678#[stable(feature = "rust1", since = "1.0.0")]
2679impl fmt::Display for String {
2680    #[inline]
2681    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2682        fmt::Display::fmt(&**self, f)
2683    }
2684}
2685
2686#[stable(feature = "rust1", since = "1.0.0")]
2687impl fmt::Debug for String {
2688    #[inline]
2689    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2690        fmt::Debug::fmt(&**self, f)
2691    }
2692}
2693
2694#[stable(feature = "rust1", since = "1.0.0")]
2695impl hash::Hash for String {
2696    #[inline]
2697    fn hash<H: hash::Hasher>(&self, hasher: &mut H) {
2698        (**self).hash(hasher)
2699    }
2700}
2701
2702/// Implements the `+` operator for concatenating two strings.
2703///
2704/// This consumes the `String` on the left-hand side and re-uses its buffer (growing it if
2705/// necessary). This is done to avoid allocating a new `String` and copying the entire contents on
2706/// every operation, which would lead to *O*(*n*^2) running time when building an *n*-byte string by
2707/// repeated concatenation.
2708///
2709/// The string on the right-hand side is only borrowed; its contents are copied into the returned
2710/// `String`.
2711///
2712/// # Examples
2713///
2714/// Concatenating two `String`s takes the first by value and borrows the second:
2715///
2716/// ```
2717/// let a = String::from("hello");
2718/// let b = String::from(" world");
2719/// let c = a + &b;
2720/// // `a` is moved and can no longer be used here.
2721/// ```
2722///
2723/// If you want to keep using the first `String`, you can clone it and append to the clone instead:
2724///
2725/// ```
2726/// let a = String::from("hello");
2727/// let b = String::from(" world");
2728/// let c = a.clone() + &b;
2729/// // `a` is still valid here.
2730/// ```
2731///
2732/// Concatenating `&str` slices can be done by converting the first to a `String`:
2733///
2734/// ```
2735/// let a = "hello";
2736/// let b = " world";
2737/// let c = a.to_string() + b;
2738/// ```
2739#[cfg(not(no_global_oom_handling))]
2740#[stable(feature = "rust1", since = "1.0.0")]
2741impl Add<&str> for String {
2742    type Output = String;
2743
2744    #[inline]
2745    fn add(mut self, other: &str) -> String {
2746        self.push_str(other);
2747        self
2748    }
2749}
2750
2751/// Implements the `+=` operator for appending to a `String`.
2752///
2753/// This has the same behavior as the [`push_str`][String::push_str] method.
2754#[cfg(not(no_global_oom_handling))]
2755#[stable(feature = "stringaddassign", since = "1.12.0")]
2756impl AddAssign<&str> for String {
2757    #[inline]
2758    fn add_assign(&mut self, other: &str) {
2759        self.push_str(other);
2760    }
2761}
2762
2763#[stable(feature = "rust1", since = "1.0.0")]
2764impl<I> ops::Index<I> for String
2765where
2766    I: slice::SliceIndex<str>,
2767{
2768    type Output = I::Output;
2769
2770    #[inline]
2771    fn index(&self, index: I) -> &I::Output {
2772        index.index(self.as_str())
2773    }
2774}
2775
2776#[stable(feature = "rust1", since = "1.0.0")]
2777impl<I> ops::IndexMut<I> for String
2778where
2779    I: slice::SliceIndex<str>,
2780{
2781    #[inline]
2782    fn index_mut(&mut self, index: I) -> &mut I::Output {
2783        index.index_mut(self.as_mut_str())
2784    }
2785}
2786
2787#[stable(feature = "rust1", since = "1.0.0")]
2788impl ops::Deref for String {
2789    type Target = str;
2790
2791    #[inline]
2792    fn deref(&self) -> &str {
2793        self.as_str()
2794    }
2795}
2796
2797#[unstable(feature = "deref_pure_trait", issue = "87121")]
2798unsafe impl ops::DerefPure for String {}
2799
2800#[stable(feature = "derefmut_for_string", since = "1.3.0")]
2801impl ops::DerefMut for String {
2802    #[inline]
2803    fn deref_mut(&mut self) -> &mut str {
2804        self.as_mut_str()
2805    }
2806}
2807
2808/// A type alias for [`Infallible`].
2809///
2810/// This alias exists for backwards compatibility, and may be eventually deprecated.
2811///
2812/// [`Infallible`]: core::convert::Infallible "convert::Infallible"
2813#[stable(feature = "str_parse_error", since = "1.5.0")]
2814pub type ParseError = core::convert::Infallible;
2815
2816#[cfg(not(no_global_oom_handling))]
2817#[stable(feature = "rust1", since = "1.0.0")]
2818impl FromStr for String {
2819    type Err = core::convert::Infallible;
2820    #[inline]
2821    fn from_str(s: &str) -> Result<String, Self::Err> {
2822        Ok(String::from(s))
2823    }
2824}
2825
2826/// A trait for converting a value to a `String`.
2827///
2828/// This trait is automatically implemented for any type which implements the
2829/// [`Display`] trait. As such, `ToString` shouldn't be implemented directly:
2830/// [`Display`] should be implemented instead, and you get the `ToString`
2831/// implementation for free.
2832///
2833/// [`Display`]: fmt::Display
2834#[rustc_diagnostic_item = "ToString"]
2835#[stable(feature = "rust1", since = "1.0.0")]
2836pub trait ToString {
2837    /// Converts the given value to a `String`.
2838    ///
2839    /// # Examples
2840    ///
2841    /// ```
2842    /// let i = 5;
2843    /// let five = String::from("5");
2844    ///
2845    /// assert_eq!(five, i.to_string());
2846    /// ```
2847    #[rustc_conversion_suggestion]
2848    #[stable(feature = "rust1", since = "1.0.0")]
2849    #[rustc_diagnostic_item = "to_string_method"]
2850    fn to_string(&self) -> String;
2851}
2852
2853/// # Panics
2854///
2855/// In this implementation, the `to_string` method panics
2856/// if the `Display` implementation returns an error.
2857/// This indicates an incorrect `Display` implementation
2858/// since `fmt::Write for String` never returns an error itself.
2859#[cfg(not(no_global_oom_handling))]
2860#[stable(feature = "rust1", since = "1.0.0")]
2861impl<T: fmt::Display + ?Sized> ToString for T {
2862    #[inline]
2863    fn to_string(&self) -> String {
2864        <Self as SpecToString>::spec_to_string(self)
2865    }
2866}
2867
2868#[cfg(not(no_global_oom_handling))]
2869trait SpecToString {
2870    fn spec_to_string(&self) -> String;
2871}
2872
2873#[cfg(not(no_global_oom_handling))]
2874impl<T: fmt::Display + ?Sized> SpecToString for T {
2875    // A common guideline is to not inline generic functions. However,
2876    // removing `#[inline]` from this method causes non-negligible regressions.
2877    // See <https://github.com/rust-lang/rust/pull/74852>, the last attempt
2878    // to try to remove it.
2879    #[inline]
2880    default fn spec_to_string(&self) -> String {
2881        let mut buf = String::new();
2882        let mut formatter =
2883            core::fmt::Formatter::new(&mut buf, core::fmt::FormattingOptions::new());
2884        // Bypass format_args!() to avoid write_str with zero-length strs
2885        fmt::Display::fmt(self, &mut formatter)
2886            .expect("a Display implementation returned an error unexpectedly");
2887        buf
2888    }
2889}
2890
2891#[cfg(not(no_global_oom_handling))]
2892impl SpecToString for core::ascii::Char {
2893    #[inline]
2894    fn spec_to_string(&self) -> String {
2895        self.as_str().to_owned()
2896    }
2897}
2898
2899#[cfg(not(no_global_oom_handling))]
2900impl SpecToString for char {
2901    #[inline]
2902    fn spec_to_string(&self) -> String {
2903        String::from(self.encode_utf8(&mut [0; char::MAX_LEN_UTF8]))
2904    }
2905}
2906
2907#[cfg(not(no_global_oom_handling))]
2908impl SpecToString for bool {
2909    #[inline]
2910    fn spec_to_string(&self) -> String {
2911        String::from(if *self { "true" } else { "false" })
2912    }
2913}
2914
2915macro_rules! impl_to_string {
2916    ($($signed:ident, $unsigned:ident,)*) => {
2917        $(
2918        #[cfg(not(no_global_oom_handling))]
2919        #[cfg(not(feature = "optimize_for_size"))]
2920        impl SpecToString for $signed {
2921            #[inline]
2922            fn spec_to_string(&self) -> String {
2923                const SIZE: usize = $signed::MAX.ilog10() as usize + 1;
2924                let mut buf = [core::mem::MaybeUninit::<u8>::uninit(); SIZE];
2925                // Only difference between signed and unsigned are these 8 lines.
2926                let mut out;
2927                if *self < 0 {
2928                    out = String::with_capacity(SIZE + 1);
2929                    out.push('-');
2930                } else {
2931                    out = String::with_capacity(SIZE);
2932                }
2933
2934                // SAFETY: `buf` is always big enough to contain all the digits.
2935                unsafe { out.push_str(self.unsigned_abs()._fmt(&mut buf)); }
2936                out
2937            }
2938        }
2939        #[cfg(not(no_global_oom_handling))]
2940        #[cfg(not(feature = "optimize_for_size"))]
2941        impl SpecToString for $unsigned {
2942            #[inline]
2943            fn spec_to_string(&self) -> String {
2944                const SIZE: usize = $unsigned::MAX.ilog10() as usize + 1;
2945                let mut buf = [core::mem::MaybeUninit::<u8>::uninit(); SIZE];
2946
2947                // SAFETY: `buf` is always big enough to contain all the digits.
2948                unsafe { self._fmt(&mut buf).to_string() }
2949            }
2950        }
2951        )*
2952    }
2953}
2954
2955impl_to_string! {
2956    i8, u8,
2957    i16, u16,
2958    i32, u32,
2959    i64, u64,
2960    isize, usize,
2961    i128, u128,
2962}
2963
2964#[cfg(not(no_global_oom_handling))]
2965#[cfg(feature = "optimize_for_size")]
2966impl SpecToString for u8 {
2967    #[inline]
2968    fn spec_to_string(&self) -> String {
2969        let mut buf = String::with_capacity(3);
2970        let mut n = *self;
2971        if n >= 10 {
2972            if n >= 100 {
2973                buf.push((b'0' + n / 100) as char);
2974                n %= 100;
2975            }
2976            buf.push((b'0' + n / 10) as char);
2977            n %= 10;
2978        }
2979        buf.push((b'0' + n) as char);
2980        buf
2981    }
2982}
2983
2984#[cfg(not(no_global_oom_handling))]
2985#[cfg(feature = "optimize_for_size")]
2986impl SpecToString for i8 {
2987    #[inline]
2988    fn spec_to_string(&self) -> String {
2989        let mut buf = String::with_capacity(4);
2990        if self.is_negative() {
2991            buf.push('-');
2992        }
2993        let mut n = self.unsigned_abs();
2994        if n >= 10 {
2995            if n >= 100 {
2996                buf.push('1');
2997                n -= 100;
2998            }
2999            buf.push((b'0' + n / 10) as char);
3000            n %= 10;
3001        }
3002        buf.push((b'0' + n) as char);
3003        buf
3004    }
3005}
3006
3007#[cfg(not(no_global_oom_handling))]
3008macro_rules! to_string_str {
3009    {$($type:ty,)*} => {
3010        $(
3011            impl SpecToString for $type {
3012                #[inline]
3013                fn spec_to_string(&self) -> String {
3014                    let s: &str = self;
3015                    String::from(s)
3016                }
3017            }
3018        )*
3019    };
3020}
3021
3022#[cfg(not(no_global_oom_handling))]
3023to_string_str! {
3024    Cow<'_, str>,
3025    String,
3026    // Generic/generated code can sometimes have multiple, nested references
3027    // for strings, including `&&&str`s that would never be written
3028    // by hand.
3029    &&&&&&&&&&&&str,
3030    &&&&&&&&&&&str,
3031    &&&&&&&&&&str,
3032    &&&&&&&&&str,
3033    &&&&&&&&str,
3034    &&&&&&&str,
3035    &&&&&&str,
3036    &&&&&str,
3037    &&&&str,
3038    &&&str,
3039    &&str,
3040    &str,
3041    str,
3042}
3043
3044#[cfg(not(no_global_oom_handling))]
3045impl SpecToString for fmt::Arguments<'_> {
3046    #[inline]
3047    fn spec_to_string(&self) -> String {
3048        crate::fmt::format(*self)
3049    }
3050}
3051
3052#[stable(feature = "rust1", since = "1.0.0")]
3053impl AsRef<str> for String {
3054    #[inline]
3055    fn as_ref(&self) -> &str {
3056        self
3057    }
3058}
3059
3060#[stable(feature = "string_as_mut", since = "1.43.0")]
3061impl AsMut<str> for String {
3062    #[inline]
3063    fn as_mut(&mut self) -> &mut str {
3064        self
3065    }
3066}
3067
3068#[stable(feature = "rust1", since = "1.0.0")]
3069impl AsRef<[u8]> for String {
3070    #[inline]
3071    fn as_ref(&self) -> &[u8] {
3072        self.as_bytes()
3073    }
3074}
3075
3076#[cfg(not(no_global_oom_handling))]
3077#[stable(feature = "rust1", since = "1.0.0")]
3078impl From<&str> for String {
3079    /// Converts a `&str` into a [`String`].
3080    ///
3081    /// The result is allocated on the heap.
3082    #[inline]
3083    fn from(s: &str) -> String {
3084        s.to_owned()
3085    }
3086}
3087
3088#[cfg(not(no_global_oom_handling))]
3089#[stable(feature = "from_mut_str_for_string", since = "1.44.0")]
3090impl From<&mut str> for String {
3091    /// Converts a `&mut str` into a [`String`].
3092    ///
3093    /// The result is allocated on the heap.
3094    #[inline]
3095    fn from(s: &mut str) -> String {
3096        s.to_owned()
3097    }
3098}
3099
3100#[cfg(not(no_global_oom_handling))]
3101#[stable(feature = "from_ref_string", since = "1.35.0")]
3102impl From<&String> for String {
3103    /// Converts a `&String` into a [`String`].
3104    ///
3105    /// This clones `s` and returns the clone.
3106    #[inline]
3107    fn from(s: &String) -> String {
3108        s.clone()
3109    }
3110}
3111
3112// note: test pulls in std, which causes errors here
3113#[stable(feature = "string_from_box", since = "1.18.0")]
3114impl From<Box<str>> for String {
3115    /// Converts the given boxed `str` slice to a [`String`].
3116    /// It is notable that the `str` slice is owned.
3117    ///
3118    /// # Examples
3119    ///
3120    /// ```
3121    /// let s1: String = String::from("hello world");
3122    /// let s2: Box<str> = s1.into_boxed_str();
3123    /// let s3: String = String::from(s2);
3124    ///
3125    /// assert_eq!("hello world", s3)
3126    /// ```
3127    fn from(s: Box<str>) -> String {
3128        s.into_string()
3129    }
3130}
3131
3132#[cfg(not(no_global_oom_handling))]
3133#[stable(feature = "box_from_str", since = "1.20.0")]
3134impl From<String> for Box<str> {
3135    /// Converts the given [`String`] to a boxed `str` slice that is owned.
3136    ///
3137    /// # Examples
3138    ///
3139    /// ```
3140    /// let s1: String = String::from("hello world");
3141    /// let s2: Box<str> = Box::from(s1);
3142    /// let s3: String = String::from(s2);
3143    ///
3144    /// assert_eq!("hello world", s3)
3145    /// ```
3146    fn from(s: String) -> Box<str> {
3147        s.into_boxed_str()
3148    }
3149}
3150
3151#[cfg(not(no_global_oom_handling))]
3152#[stable(feature = "string_from_cow_str", since = "1.14.0")]
3153impl<'a> From<Cow<'a, str>> for String {
3154    /// Converts a clone-on-write string to an owned
3155    /// instance of [`String`].
3156    ///
3157    /// This extracts the owned string,
3158    /// clones the string if it is not already owned.
3159    ///
3160    /// # Example
3161    ///
3162    /// ```
3163    /// # use std::borrow::Cow;
3164    /// // If the string is not owned...
3165    /// let cow: Cow<'_, str> = Cow::Borrowed("eggplant");
3166    /// // It will allocate on the heap and copy the string.
3167    /// let owned: String = String::from(cow);
3168    /// assert_eq!(&owned[..], "eggplant");
3169    /// ```
3170    fn from(s: Cow<'a, str>) -> String {
3171        s.into_owned()
3172    }
3173}
3174
3175#[cfg(not(no_global_oom_handling))]
3176#[stable(feature = "rust1", since = "1.0.0")]
3177impl<'a> From<&'a str> for Cow<'a, str> {
3178    /// Converts a string slice into a [`Borrowed`] variant.
3179    /// No heap allocation is performed, and the string
3180    /// is not copied.
3181    ///
3182    /// # Example
3183    ///
3184    /// ```
3185    /// # use std::borrow::Cow;
3186    /// assert_eq!(Cow::from("eggplant"), Cow::Borrowed("eggplant"));
3187    /// ```
3188    ///
3189    /// [`Borrowed`]: crate::borrow::Cow::Borrowed "borrow::Cow::Borrowed"
3190    #[inline]
3191    fn from(s: &'a str) -> Cow<'a, str> {
3192        Cow::Borrowed(s)
3193    }
3194}
3195
3196#[cfg(not(no_global_oom_handling))]
3197#[stable(feature = "rust1", since = "1.0.0")]
3198impl<'a> From<String> for Cow<'a, str> {
3199    /// Converts a [`String`] into an [`Owned`] variant.
3200    /// No heap allocation is performed, and the string
3201    /// is not copied.
3202    ///
3203    /// # Example
3204    ///
3205    /// ```
3206    /// # use std::borrow::Cow;
3207    /// let s = "eggplant".to_string();
3208    /// let s2 = "eggplant".to_string();
3209    /// assert_eq!(Cow::from(s), Cow::<'static, str>::Owned(s2));
3210    /// ```
3211    ///
3212    /// [`Owned`]: crate::borrow::Cow::Owned "borrow::Cow::Owned"
3213    #[inline]
3214    fn from(s: String) -> Cow<'a, str> {
3215        Cow::Owned(s)
3216    }
3217}
3218
3219#[cfg(not(no_global_oom_handling))]
3220#[stable(feature = "cow_from_string_ref", since = "1.28.0")]
3221impl<'a> From<&'a String> for Cow<'a, str> {
3222    /// Converts a [`String`] reference into a [`Borrowed`] variant.
3223    /// No heap allocation is performed, and the string
3224    /// is not copied.
3225    ///
3226    /// # Example
3227    ///
3228    /// ```
3229    /// # use std::borrow::Cow;
3230    /// let s = "eggplant".to_string();
3231    /// assert_eq!(Cow::from(&s), Cow::Borrowed("eggplant"));
3232    /// ```
3233    ///
3234    /// [`Borrowed`]: crate::borrow::Cow::Borrowed "borrow::Cow::Borrowed"
3235    #[inline]
3236    fn from(s: &'a String) -> Cow<'a, str> {
3237        Cow::Borrowed(s.as_str())
3238    }
3239}
3240
3241#[cfg(not(no_global_oom_handling))]
3242#[stable(feature = "cow_str_from_iter", since = "1.12.0")]
3243impl<'a> FromIterator<char> for Cow<'a, str> {
3244    fn from_iter<I: IntoIterator<Item = char>>(it: I) -> Cow<'a, str> {
3245        Cow::Owned(FromIterator::from_iter(it))
3246    }
3247}
3248
3249#[cfg(not(no_global_oom_handling))]
3250#[stable(feature = "cow_str_from_iter", since = "1.12.0")]
3251impl<'a, 'b> FromIterator<&'b str> for Cow<'a, str> {
3252    fn from_iter<I: IntoIterator<Item = &'b str>>(it: I) -> Cow<'a, str> {
3253        Cow::Owned(FromIterator::from_iter(it))
3254    }
3255}
3256
3257#[cfg(not(no_global_oom_handling))]
3258#[stable(feature = "cow_str_from_iter", since = "1.12.0")]
3259impl<'a> FromIterator<String> for Cow<'a, str> {
3260    fn from_iter<I: IntoIterator<Item = String>>(it: I) -> Cow<'a, str> {
3261        Cow::Owned(FromIterator::from_iter(it))
3262    }
3263}
3264
3265#[cfg(not(no_global_oom_handling))]
3266#[unstable(feature = "ascii_char", issue = "110998")]
3267impl<'a> FromIterator<core::ascii::Char> for Cow<'a, str> {
3268    fn from_iter<T: IntoIterator<Item = core::ascii::Char>>(it: T) -> Self {
3269        Cow::Owned(FromIterator::from_iter(it))
3270    }
3271}
3272
3273#[stable(feature = "from_string_for_vec_u8", since = "1.14.0")]
3274impl From<String> for Vec<u8> {
3275    /// Converts the given [`String`] to a vector [`Vec`] that holds values of type [`u8`].
3276    ///
3277    /// # Examples
3278    ///
3279    /// ```
3280    /// let s1 = String::from("hello world");
3281    /// let v1 = Vec::from(s1);
3282    ///
3283    /// for b in v1 {
3284    ///     println!("{b}");
3285    /// }
3286    /// ```
3287    fn from(string: String) -> Vec<u8> {
3288        string.into_bytes()
3289    }
3290}
3291
3292#[stable(feature = "try_from_vec_u8_for_string", since = "1.87.0")]
3293impl TryFrom<Vec<u8>> for String {
3294    type Error = FromUtf8Error;
3295    /// Converts the given [`Vec<u8>`] into a  [`String`] if it contains valid UTF-8 data.
3296    ///
3297    /// # Examples
3298    ///
3299    /// ```
3300    /// let s1 = b"hello world".to_vec();
3301    /// let v1 = String::try_from(s1).unwrap();
3302    /// assert_eq!(v1, "hello world");
3303    ///
3304    /// ```
3305    fn try_from(bytes: Vec<u8>) -> Result<Self, Self::Error> {
3306        Self::from_utf8(bytes)
3307    }
3308}
3309
3310#[cfg(not(no_global_oom_handling))]
3311#[stable(feature = "rust1", since = "1.0.0")]
3312impl fmt::Write for String {
3313    #[inline]
3314    fn write_str(&mut self, s: &str) -> fmt::Result {
3315        self.push_str(s);
3316        Ok(())
3317    }
3318
3319    #[inline]
3320    fn write_char(&mut self, c: char) -> fmt::Result {
3321        self.push(c);
3322        Ok(())
3323    }
3324}
3325
3326/// An iterator over the [`char`]s of a string.
3327///
3328/// This struct is created by the [`into_chars`] method on [`String`].
3329/// See its documentation for more.
3330///
3331/// [`char`]: prim@char
3332/// [`into_chars`]: String::into_chars
3333#[cfg_attr(not(no_global_oom_handling), derive(Clone))]
3334#[must_use = "iterators are lazy and do nothing unless consumed"]
3335#[unstable(feature = "string_into_chars", issue = "133125")]
3336pub struct IntoChars {
3337    bytes: vec::IntoIter<u8>,
3338}
3339
3340#[unstable(feature = "string_into_chars", issue = "133125")]
3341impl fmt::Debug for IntoChars {
3342    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3343        f.debug_tuple("IntoChars").field(&self.as_str()).finish()
3344    }
3345}
3346
3347impl IntoChars {
3348    /// Views the underlying data as a subslice of the original data.
3349    ///
3350    /// # Examples
3351    ///
3352    /// ```
3353    /// #![feature(string_into_chars)]
3354    ///
3355    /// let mut chars = String::from("abc").into_chars();
3356    ///
3357    /// assert_eq!(chars.as_str(), "abc");
3358    /// chars.next();
3359    /// assert_eq!(chars.as_str(), "bc");
3360    /// chars.next();
3361    /// chars.next();
3362    /// assert_eq!(chars.as_str(), "");
3363    /// ```
3364    #[unstable(feature = "string_into_chars", issue = "133125")]
3365    #[must_use]
3366    #[inline]
3367    pub fn as_str(&self) -> &str {
3368        // SAFETY: `bytes` is a valid UTF-8 string.
3369        unsafe { str::from_utf8_unchecked(self.bytes.as_slice()) }
3370    }
3371
3372    /// Consumes the `IntoChars`, returning the remaining string.
3373    ///
3374    /// # Examples
3375    ///
3376    /// ```
3377    /// #![feature(string_into_chars)]
3378    ///
3379    /// let chars = String::from("abc").into_chars();
3380    /// assert_eq!(chars.into_string(), "abc");
3381    ///
3382    /// let mut chars = String::from("def").into_chars();
3383    /// chars.next();
3384    /// assert_eq!(chars.into_string(), "ef");
3385    /// ```
3386    #[cfg(not(no_global_oom_handling))]
3387    #[unstable(feature = "string_into_chars", issue = "133125")]
3388    #[inline]
3389    pub fn into_string(self) -> String {
3390        // Safety: `bytes` are kept in UTF-8 form, only removing whole `char`s at a time.
3391        unsafe { String::from_utf8_unchecked(self.bytes.collect()) }
3392    }
3393
3394    #[inline]
3395    fn iter(&self) -> CharIndices<'_> {
3396        self.as_str().char_indices()
3397    }
3398}
3399
3400#[unstable(feature = "string_into_chars", issue = "133125")]
3401impl Iterator for IntoChars {
3402    type Item = char;
3403
3404    #[inline]
3405    fn next(&mut self) -> Option<char> {
3406        let mut iter = self.iter();
3407        match iter.next() {
3408            None => None,
3409            Some((_, ch)) => {
3410                let offset = iter.offset();
3411                // `offset` is a valid index.
3412                let _ = self.bytes.advance_by(offset);
3413                Some(ch)
3414            }
3415        }
3416    }
3417
3418    #[inline]
3419    fn count(self) -> usize {
3420        self.iter().count()
3421    }
3422
3423    #[inline]
3424    fn size_hint(&self) -> (usize, Option<usize>) {
3425        self.iter().size_hint()
3426    }
3427
3428    #[inline]
3429    fn last(mut self) -> Option<char> {
3430        self.next_back()
3431    }
3432}
3433
3434#[unstable(feature = "string_into_chars", issue = "133125")]
3435impl DoubleEndedIterator for IntoChars {
3436    #[inline]
3437    fn next_back(&mut self) -> Option<char> {
3438        let len = self.as_str().len();
3439        let mut iter = self.iter();
3440        match iter.next_back() {
3441            None => None,
3442            Some((idx, ch)) => {
3443                // `idx` is a valid index.
3444                let _ = self.bytes.advance_back_by(len - idx);
3445                Some(ch)
3446            }
3447        }
3448    }
3449}
3450
3451#[unstable(feature = "string_into_chars", issue = "133125")]
3452impl FusedIterator for IntoChars {}
3453
3454/// A draining iterator for `String`.
3455///
3456/// This struct is created by the [`drain`] method on [`String`]. See its
3457/// documentation for more.
3458///
3459/// [`drain`]: String::drain
3460#[stable(feature = "drain", since = "1.6.0")]
3461pub struct Drain<'a> {
3462    /// Will be used as &'a mut String in the destructor
3463    string: *mut String,
3464    /// Start of part to remove
3465    start: usize,
3466    /// End of part to remove
3467    end: usize,
3468    /// Current remaining range to remove
3469    iter: Chars<'a>,
3470}
3471
3472#[stable(feature = "collection_debug", since = "1.17.0")]
3473impl fmt::Debug for Drain<'_> {
3474    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3475        f.debug_tuple("Drain").field(&self.as_str()).finish()
3476    }
3477}
3478
3479#[stable(feature = "drain", since = "1.6.0")]
3480unsafe impl Sync for Drain<'_> {}
3481#[stable(feature = "drain", since = "1.6.0")]
3482unsafe impl Send for Drain<'_> {}
3483
3484#[stable(feature = "drain", since = "1.6.0")]
3485impl Drop for Drain<'_> {
3486    fn drop(&mut self) {
3487        unsafe {
3488            // Use Vec::drain. "Reaffirm" the bounds checks to avoid
3489            // panic code being inserted again.
3490            let self_vec = (*self.string).as_mut_vec();
3491            if self.start <= self.end && self.end <= self_vec.len() {
3492                self_vec.drain(self.start..self.end);
3493            }
3494        }
3495    }
3496}
3497
3498impl<'a> Drain<'a> {
3499    /// Returns the remaining (sub)string of this iterator as a slice.
3500    ///
3501    /// # Examples
3502    ///
3503    /// ```
3504    /// let mut s = String::from("abc");
3505    /// let mut drain = s.drain(..);
3506    /// assert_eq!(drain.as_str(), "abc");
3507    /// let _ = drain.next().unwrap();
3508    /// assert_eq!(drain.as_str(), "bc");
3509    /// ```
3510    #[must_use]
3511    #[stable(feature = "string_drain_as_str", since = "1.55.0")]
3512    pub fn as_str(&self) -> &str {
3513        self.iter.as_str()
3514    }
3515}
3516
3517#[stable(feature = "string_drain_as_str", since = "1.55.0")]
3518impl<'a> AsRef<str> for Drain<'a> {
3519    fn as_ref(&self) -> &str {
3520        self.as_str()
3521    }
3522}
3523
3524#[stable(feature = "string_drain_as_str", since = "1.55.0")]
3525impl<'a> AsRef<[u8]> for Drain<'a> {
3526    fn as_ref(&self) -> &[u8] {
3527        self.as_str().as_bytes()
3528    }
3529}
3530
3531#[stable(feature = "drain", since = "1.6.0")]
3532impl Iterator for Drain<'_> {
3533    type Item = char;
3534
3535    #[inline]
3536    fn next(&mut self) -> Option<char> {
3537        self.iter.next()
3538    }
3539
3540    fn size_hint(&self) -> (usize, Option<usize>) {
3541        self.iter.size_hint()
3542    }
3543
3544    #[inline]
3545    fn last(mut self) -> Option<char> {
3546        self.next_back()
3547    }
3548}
3549
3550#[stable(feature = "drain", since = "1.6.0")]
3551impl DoubleEndedIterator for Drain<'_> {
3552    #[inline]
3553    fn next_back(&mut self) -> Option<char> {
3554        self.iter.next_back()
3555    }
3556}
3557
3558#[stable(feature = "fused", since = "1.26.0")]
3559impl FusedIterator for Drain<'_> {}
3560
3561#[cfg(not(no_global_oom_handling))]
3562#[stable(feature = "from_char_for_string", since = "1.46.0")]
3563impl From<char> for String {
3564    /// Allocates an owned [`String`] from a single character.
3565    ///
3566    /// # Example
3567    /// ```rust
3568    /// let c: char = 'a';
3569    /// let s: String = String::from(c);
3570    /// assert_eq!("a", &s[..]);
3571    /// ```
3572    #[inline]
3573    fn from(c: char) -> Self {
3574        c.to_string()
3575    }
3576}