mod.rs - source (original) (raw)

std/io/

mod.rs

1//! Traits, helpers, and type definitions for core I/O functionality.
2//!
3//! The `std::io` module contains a number of common things you'll need
4//! when doing input and output. The most core part of this module is
5//! the [`Read`] and [`Write`] traits, which provide the
6//! most general interface for reading and writing input and output.
7//!
8//! ## Read and Write
9//!
10//! Because they are traits, [`Read`] and [`Write`] are implemented by a number
11//! of other types, and you can implement them for your types too. As such,
12//! you'll see a few different types of I/O throughout the documentation in
13//! this module: [`File`]s, [`TcpStream`]s, and sometimes even [`Vec<T>`]s. For
14//! example, [`Read`] adds a [`read`][`Read::read`] method, which we can use on
15//! [`File`]s:
16//!
17//! ```no_run
18//! use std::io;
19//! use std::io::prelude::*;
20//! use std::fs::File;
21//!
22//! fn main() -> io::Result<()> {
23//!     let mut f = File::open("foo.txt")?;
24//!     let mut buffer = [0; 10];
25//!
26//!     // read up to 10 bytes
27//!     let n = f.read(&mut buffer)?;
28//!
29//!     println!("The bytes: {:?}", &buffer[..n]);
30//!     Ok(())
31//! }
32//! ```
33//!
34//! [`Read`] and [`Write`] are so important, implementors of the two traits have a
35//! nickname: readers and writers. So you'll sometimes see 'a reader' instead
36//! of 'a type that implements the [`Read`] trait'. Much easier!
37//!
38//! ## Seek and BufRead
39//!
40//! Beyond that, there are two important traits that are provided: [`Seek`]
41//! and [`BufRead`]. Both of these build on top of a reader to control
42//! how the reading happens. [`Seek`] lets you control where the next byte is
43//! coming from:
44//!
45//! ```no_run
46//! use std::io;
47//! use std::io::prelude::*;
48//! use std::io::SeekFrom;
49//! use std::fs::File;
50//!
51//! fn main() -> io::Result<()> {
52//!     let mut f = File::open("foo.txt")?;
53//!     let mut buffer = [0; 10];
54//!
55//!     // skip to the last 10 bytes of the file
56//!     f.seek(SeekFrom::End(-10))?;
57//!
58//!     // read up to 10 bytes
59//!     let n = f.read(&mut buffer)?;
60//!
61//!     println!("The bytes: {:?}", &buffer[..n]);
62//!     Ok(())
63//! }
64//! ```
65//!
66//! [`BufRead`] uses an internal buffer to provide a number of other ways to read, but
67//! to show it off, we'll need to talk about buffers in general. Keep reading!
68//!
69//! ## BufReader and BufWriter
70//!
71//! Byte-based interfaces are unwieldy and can be inefficient, as we'd need to be
72//! making near-constant calls to the operating system. To help with this,
73//! `std::io` comes with two structs, [`BufReader`] and [`BufWriter`], which wrap
74//! readers and writers. The wrapper uses a buffer, reducing the number of
75//! calls and providing nicer methods for accessing exactly what you want.
76//!
77//! For example, [`BufReader`] works with the [`BufRead`] trait to add extra
78//! methods to any reader:
79//!
80//! ```no_run
81//! use std::io;
82//! use std::io::prelude::*;
83//! use std::io::BufReader;
84//! use std::fs::File;
85//!
86//! fn main() -> io::Result<()> {
87//!     let f = File::open("foo.txt")?;
88//!     let mut reader = BufReader::new(f);
89//!     let mut buffer = String::new();
90//!
91//!     // read a line into buffer
92//!     reader.read_line(&mut buffer)?;
93//!
94//!     println!("{buffer}");
95//!     Ok(())
96//! }
97//! ```
98//!
99//! [`BufWriter`] doesn't add any new ways of writing; it just buffers every call
100//! to [`write`][`Write::write`]:
101//!
102//! ```no_run
103//! use std::io;
104//! use std::io::prelude::*;
105//! use std::io::BufWriter;
106//! use std::fs::File;
107//!
108//! fn main() -> io::Result<()> {
109//!     let f = File::create("foo.txt")?;
110//!     {
111//!         let mut writer = BufWriter::new(f);
112//!
113//!         // write a byte to the buffer
114//!         writer.write(&[42])?;
115//!
116//!     } // the buffer is flushed once writer goes out of scope
117//!
118//!     Ok(())
119//! }
120//! ```
121//!
122//! ## Standard input and output
123//!
124//! A very common source of input is standard input:
125//!
126//! ```no_run
127//! use std::io;
128//!
129//! fn main() -> io::Result<()> {
130//!     let mut input = String::new();
131//!
132//!     io::stdin().read_line(&mut input)?;
133//!
134//!     println!("You typed: {}", input.trim());
135//!     Ok(())
136//! }
137//! ```
138//!
139//! Note that you cannot use the [`?` operator] in functions that do not return
140//! a [`Result<T, E>`][`Result`]. Instead, you can call [`.unwrap()`]
141//! or `match` on the return value to catch any possible errors:
142//!
143//! ```no_run
144//! use std::io;
145//!
146//! let mut input = String::new();
147//!
148//! io::stdin().read_line(&mut input).unwrap();
149//! ```
150//!
151//! And a very common source of output is standard output:
152//!
153//! ```no_run
154//! use std::io;
155//! use std::io::prelude::*;
156//!
157//! fn main() -> io::Result<()> {
158//!     io::stdout().write(&[42])?;
159//!     Ok(())
160//! }
161//! ```
162//!
163//! Of course, using [`io::stdout`] directly is less common than something like
164//! [`println!`].
165//!
166//! ## Iterator types
167//!
168//! A large number of the structures provided by `std::io` are for various
169//! ways of iterating over I/O. For example, [`Lines`] is used to split over
170//! lines:
171//!
172//! ```no_run
173//! use std::io;
174//! use std::io::prelude::*;
175//! use std::io::BufReader;
176//! use std::fs::File;
177//!
178//! fn main() -> io::Result<()> {
179//!     let f = File::open("foo.txt")?;
180//!     let reader = BufReader::new(f);
181//!
182//!     for line in reader.lines() {
183//!         println!("{}", line?);
184//!     }
185//!     Ok(())
186//! }
187//! ```
188//!
189//! ## Functions
190//!
191//! There are a number of [functions][functions-list] that offer access to various
192//! features. For example, we can use three of these functions to copy everything
193//! from standard input to standard output:
194//!
195//! ```no_run
196//! use std::io;
197//!
198//! fn main() -> io::Result<()> {
199//!     io::copy(&mut io::stdin(), &mut io::stdout())?;
200//!     Ok(())
201//! }
202//! ```
203//!
204//! [functions-list]: #functions-1
205//!
206//! ## io::Result
207//!
208//! Last, but certainly not least, is [`io::Result`]. This type is used
209//! as the return type of many `std::io` functions that can cause an error, and
210//! can be returned from your own functions as well. Many of the examples in this
211//! module use the [`?` operator]:
212//!
213//! ```
214//! use std::io;
215//!
216//! fn read_input() -> io::Result<()> {
217//!     let mut input = String::new();
218//!
219//!     io::stdin().read_line(&mut input)?;
220//!
221//!     println!("You typed: {}", input.trim());
222//!
223//!     Ok(())
224//! }
225//! ```
226//!
227//! The return type of `read_input()`, [`io::Result<()>`][`io::Result`], is a very
228//! common type for functions which don't have a 'real' return value, but do want to
229//! return errors if they happen. In this case, the only purpose of this function is
230//! to read the line and print it, so we use `()`.
231//!
232//! ## Platform-specific behavior
233//!
234//! Many I/O functions throughout the standard library are documented to indicate
235//! what various library or syscalls they are delegated to. This is done to help
236//! applications both understand what's happening under the hood as well as investigate
237//! any possibly unclear semantics. Note, however, that this is informative, not a binding
238//! contract. The implementation of many of these functions are subject to change over
239//! time and may call fewer or more syscalls/library functions.
240//!
241//! ## I/O Safety
242//!
243//! Rust follows an I/O safety discipline that is comparable to its memory safety discipline. This
244//! means that file descriptors can be *exclusively owned*. (Here, "file descriptor" is meant to
245//! subsume similar concepts that exist across a wide range of operating systems even if they might
246//! use a different name, such as "handle".) An exclusively owned file descriptor is one that no
247//! other code is allowed to access in any way, but the owner is allowed to access and even close
248//! it any time. A type that owns its file descriptor should usually close it in its `drop`
249//! function. Types like [`File`] own their file descriptor. Similarly, file descriptors
250//! can be *borrowed*, granting the temporary right to perform operations on this file descriptor.
251//! This indicates that the file descriptor will not be closed for the lifetime of the borrow, but
252//! it does *not* imply any right to close this file descriptor, since it will likely be owned by
253//! someone else.
254//!
255//! The platform-specific parts of the Rust standard library expose types that reflect these
256//! concepts, see [`os::unix`] and [`os::windows`].
257//!
258//! To uphold I/O safety, it is crucial that no code acts on file descriptors it does not own or
259//! borrow, and no code closes file descriptors it does not own. In other words, a safe function
260//! that takes a regular integer, treats it as a file descriptor, and acts on it, is *unsound*.
261//!
262//! Not upholding I/O safety and acting on a file descriptor without proof of ownership can lead to
263//! misbehavior and even Undefined Behavior in code that relies on ownership of its file
264//! descriptors: a closed file descriptor could be re-allocated, so the original owner of that file
265//! descriptor is now working on the wrong file. Some code might even rely on fully encapsulating
266//! its file descriptors with no operations being performed by any other part of the program.
267//!
268//! Note that exclusive ownership of a file descriptor does *not* imply exclusive ownership of the
269//! underlying kernel object that the file descriptor references (also called "open file description" on
270//! some operating systems). File descriptors basically work like [`Arc`]: when you receive an owned
271//! file descriptor, you cannot know whether there are any other file descriptors that reference the
272//! same kernel object. However, when you create a new kernel object, you know that you are holding
273//! the only reference to it. Just be careful not to lend it to anyone, since they can obtain a
274//! clone and then you can no longer know what the reference count is! In that sense, [`OwnedFd`] is
275//! like `Arc` and [`BorrowedFd<'a>`] is like `&'a Arc` (and similar for the Windows types). In
276//! particular, given a `BorrowedFd<'a>`, you are not allowed to close the file descriptor -- just
277//! like how, given a `&'a Arc`, you are not allowed to decrement the reference count and
278//! potentially free the underlying object. There is no equivalent to `Box` for file descriptors in
279//! the standard library (that would be a type that guarantees that the reference count is `1`),
280//! however, it would be possible for a crate to define a type with those semantics.
281//!
282//! [`File`]: crate::fs::File
283//! [`TcpStream`]: crate:🥅:TcpStream
284//! [`io::stdout`]: stdout
285//! [`io::Result`]: self::Result
286//! [`?` operator]: ../../book/appendix-02-operators.html
287//! [`Result`]: crate::result::Result
288//! [`.unwrap()`]: crate::result::Result::unwrap
289//! [`os::unix`]: ../os/unix/io/index.html
290//! [`os::windows`]: ../os/windows/io/index.html
291//! [`OwnedFd`]: ../os/fd/struct.OwnedFd.html
292//! [`BorrowedFd<'a>`]: ../os/fd/struct.BorrowedFd.html
293//! [`Arc`]: crate::sync::Arc
294
295#![stable(feature = "rust1", since = "1.0.0")]
296
297#[cfg(test)]
298mod tests;
299
300#[unstable(feature = "read_buf", issue = "78485")]
301pub use core::io::{BorrowedBuf, BorrowedCursor};
302use core::slice::memchr;
303
304#[stable(feature = "bufwriter_into_parts", since = "1.56.0")]
305pub use self::buffered::WriterPanicked;
306#[unstable(feature = "raw_os_error_ty", issue = "107792")]
307pub use self::error::RawOsError;
308#[doc(hidden)]
309#[unstable(feature = "io_const_error_internals", issue = "none")]
310pub use self::error::SimpleMessage;
311#[unstable(feature = "io_const_error", issue = "133448")]
312pub use self::error::const_error;
313#[stable(feature = "anonymous_pipe", since = "1.87.0")]
314pub use self::pipe::{PipeReader, PipeWriter, pipe};
315#[stable(feature = "is_terminal", since = "1.70.0")]
316pub use self::stdio::IsTerminal;
317pub(crate) use self::stdio::attempt_print_to_stderr;
318#[unstable(feature = "print_internals", issue = "none")]
319#[doc(hidden)]
320pub use self::stdio::{_eprint, _print};
321#[unstable(feature = "internal_output_capture", issue = "none")]
322#[doc(no_inline, hidden)]
323pub use self::stdio::{set_output_capture, try_set_output_capture};
324#[stable(feature = "rust1", since = "1.0.0")]
325pub use self::{
326    buffered::{BufReader, BufWriter, IntoInnerError, LineWriter},
327    copy::copy,
328    cursor::Cursor,
329    error::{Error, ErrorKind, Result},
330    stdio::{Stderr, StderrLock, Stdin, StdinLock, Stdout, StdoutLock, stderr, stdin, stdout},
331    util::{Empty, Repeat, Sink, empty, repeat, sink},
332};
333use crate::mem::take;
334use crate::ops::{Deref, DerefMut};
335use crate::{cmp, fmt, slice, str, sys};
336
337mod buffered;
338pub(crate) mod copy;
339mod cursor;
340mod error;
341mod impls;
342mod pipe;
343pub mod prelude;
344mod stdio;
345mod util;
346
347const DEFAULT_BUF_SIZE: usize = crate::sys::io::DEFAULT_BUF_SIZE;
348
349pub(crate) use stdio::cleanup;
350
351struct Guard<'a> {
352    buf: &'a mut Vec<u8>,
353    len: usize,
354}
355
356impl Drop for Guard<'_> {
357    fn drop(&mut self) {
358        unsafe {
359            self.buf.set_len(self.len);
360        }
361    }
362}
363
364// Several `read_to_string` and `read_line` methods in the standard library will
365// append data into a `String` buffer, but we need to be pretty careful when
366// doing this. The implementation will just call `.as_mut_vec()` and then
367// delegate to a byte-oriented reading method, but we must ensure that when
368// returning we never leave `buf` in a state such that it contains invalid UTF-8
369// in its bounds.
370//
371// To this end, we use an RAII guard (to protect against panics) which updates
372// the length of the string when it is dropped. This guard initially truncates
373// the string to the prior length and only after we've validated that the
374// new contents are valid UTF-8 do we allow it to set a longer length.
375//
376// The unsafety in this function is twofold:
377//
378// 1. We're looking at the raw bytes of `buf`, so we take on the burden of UTF-8
379//    checks.
380// 2. We're passing a raw buffer to the function `f`, and it is expected that
381//    the function only *appends* bytes to the buffer. We'll get undefined
382//    behavior if existing bytes are overwritten to have non-UTF-8 data.
383pub(crate) unsafe fn append_to_string<F>(buf: &mut String, f: F) -> Result<usize>
384where
385    F: FnOnce(&mut Vec<u8>) -> Result<usize>,
386{
387    let mut g = Guard { len: buf.len(), buf: unsafe { buf.as_mut_vec() } };
388    let ret = f(g.buf);
389
390    // SAFETY: the caller promises to only append data to `buf`
391    let appended = unsafe { g.buf.get_unchecked(g.len..) };
392    if str::from_utf8(appended).is_err() {
393        ret.and_then(|_| Err(Error::INVALID_UTF8))
394    } else {
395        g.len = g.buf.len();
396        ret
397    }
398}
399
400// Here we must serve many masters with conflicting goals:
401//
402// - avoid allocating unless necessary
403// - avoid overallocating if we know the exact size (#89165)
404// - avoid passing large buffers to readers that always initialize the free capacity if they perform short reads (#23815, #23820)
405// - pass large buffers to readers that do not initialize the spare capacity. this can amortize per-call overheads
406// - and finally pass not-too-small and not-too-large buffers to Windows read APIs because they manage to suffer from both problems
407//   at the same time, i.e. small reads suffer from syscall overhead, all reads incur costs proportional to buffer size (#110650)
408//
409pub(crate) fn default_read_to_end<R: Read + ?Sized>(
410    r: &mut R,
411    buf: &mut Vec<u8>,
412    size_hint: Option<usize>,
413) -> Result<usize> {
414    let start_len = buf.len();
415    let start_cap = buf.capacity();
416    // Optionally limit the maximum bytes read on each iteration.
417    // This adds an arbitrary fiddle factor to allow for more data than we expect.
418    let mut max_read_size = size_hint
419        .and_then(|s| s.checked_add(1024)?.checked_next_multiple_of(DEFAULT_BUF_SIZE))
420        .unwrap_or(DEFAULT_BUF_SIZE);
421
422    let mut initialized = 0; // Extra initialized bytes from previous loop iteration
423
424    const PROBE_SIZE: usize = 32;
425
426    fn small_probe_read<R: Read + ?Sized>(r: &mut R, buf: &mut Vec<u8>) -> Result<usize> {
427        let mut probe = [0u8; PROBE_SIZE];
428
429        loop {
430            match r.read(&mut probe) {
431                Ok(n) => {
432                    // there is no way to recover from allocation failure here
433                    // because the data has already been read.
434                    buf.extend_from_slice(&probe[..n]);
435                    return Ok(n);
436                }
437                Err(ref e) if e.is_interrupted() => continue,
438                Err(e) => return Err(e),
439            }
440        }
441    }
442
443    // avoid inflating empty/small vecs before we have determined that there's anything to read
444    if (size_hint.is_none() || size_hint == Some(0)) && buf.capacity() - buf.len() < PROBE_SIZE {
445        let read = small_probe_read(r, buf)?;
446
447        if read == 0 {
448            return Ok(0);
449        }
450    }
451
452    let mut consecutive_short_reads = 0;
453
454    loop {
455        if buf.len() == buf.capacity() && buf.capacity() == start_cap {
456            // The buffer might be an exact fit. Let's read into a probe buffer
457            // and see if it returns `Ok(0)`. If so, we've avoided an
458            // unnecessary doubling of the capacity. But if not, append the
459            // probe buffer to the primary buffer and let its capacity grow.
460            let read = small_probe_read(r, buf)?;
461
462            if read == 0 {
463                return Ok(buf.len() - start_len);
464            }
465        }
466
467        if buf.len() == buf.capacity() {
468            // buf is full, need more space
469            buf.try_reserve(PROBE_SIZE)?;
470        }
471
472        let mut spare = buf.spare_capacity_mut();
473        let buf_len = cmp::min(spare.len(), max_read_size);
474        spare = &mut spare[..buf_len];
475        let mut read_buf: BorrowedBuf<'_> = spare.into();
476
477        // SAFETY: These bytes were initialized but not filled in the previous loop
478        unsafe {
479            read_buf.set_init(initialized);
480        }
481
482        let mut cursor = read_buf.unfilled();
483        let result = loop {
484            match r.read_buf(cursor.reborrow()) {
485                Err(e) if e.is_interrupted() => continue,
486                // Do not stop now in case of error: we might have received both data
487                // and an error
488                res => break res,
489            }
490        };
491
492        let unfilled_but_initialized = cursor.init_ref().len();
493        let bytes_read = cursor.written();
494        let was_fully_initialized = read_buf.init_len() == buf_len;
495
496        // SAFETY: BorrowedBuf's invariants mean this much memory is initialized.
497        unsafe {
498            let new_len = bytes_read + buf.len();
499            buf.set_len(new_len);
500        }
501
502        // Now that all data is pushed to the vector, we can fail without data loss
503        result?;
504
505        if bytes_read == 0 {
506            return Ok(buf.len() - start_len);
507        }
508
509        if bytes_read < buf_len {
510            consecutive_short_reads += 1;
511        } else {
512            consecutive_short_reads = 0;
513        }
514
515        // store how much was initialized but not filled
516        initialized = unfilled_but_initialized;
517
518        // Use heuristics to determine the max read size if no initial size hint was provided
519        if size_hint.is_none() {
520            // The reader is returning short reads but it doesn't call ensure_init().
521            // In that case we no longer need to restrict read sizes to avoid
522            // initialization costs.
523            // When reading from disk we usually don't get any short reads except at EOF.
524            // So we wait for at least 2 short reads before uncapping the read buffer;
525            // this helps with the Windows issue.
526            if !was_fully_initialized && consecutive_short_reads > 1 {
527                max_read_size = usize::MAX;
528            }
529
530            // we have passed a larger buffer than previously and the
531            // reader still hasn't returned a short read
532            if buf_len >= max_read_size && bytes_read == buf_len {
533                max_read_size = max_read_size.saturating_mul(2);
534            }
535        }
536    }
537}
538
539pub(crate) fn default_read_to_string<R: Read + ?Sized>(
540    r: &mut R,
541    buf: &mut String,
542    size_hint: Option<usize>,
543) -> Result<usize> {
544    // Note that we do *not* call `r.read_to_end()` here. We are passing
545    // `&mut Vec<u8>` (the raw contents of `buf`) into the `read_to_end`
546    // method to fill it up. An arbitrary implementation could overwrite the
547    // entire contents of the vector, not just append to it (which is what
548    // we are expecting).
549    //
550    // To prevent extraneously checking the UTF-8-ness of the entire buffer
551    // we pass it to our hardcoded `default_read_to_end` implementation which
552    // we know is guaranteed to only read data into the end of the buffer.
553    unsafe { append_to_string(buf, |b| default_read_to_end(r, b, size_hint)) }
554}
555
556pub(crate) fn default_read_vectored<F>(read: F, bufs: &mut [IoSliceMut<'_>]) -> Result<usize>
557where
558    F: FnOnce(&mut [u8]) -> Result<usize>,
559{
560    let buf = bufs.iter_mut().find(|b| !b.is_empty()).map_or(&mut [][..], |b| &mut **b);
561    read(buf)
562}
563
564pub(crate) fn default_write_vectored<F>(write: F, bufs: &[IoSlice<'_>]) -> Result<usize>
565where
566    F: FnOnce(&[u8]) -> Result<usize>,
567{
568    let buf = bufs.iter().find(|b| !b.is_empty()).map_or(&[][..], |b| &**b);
569    write(buf)
570}
571
572pub(crate) fn default_read_exact<R: Read + ?Sized>(this: &mut R, mut buf: &mut [u8]) -> Result<()> {
573    while !buf.is_empty() {
574        match this.read(buf) {
575            Ok(0) => break,
576            Ok(n) => {
577                buf = &mut buf[n..];
578            }
579            Err(ref e) if e.is_interrupted() => {}
580            Err(e) => return Err(e),
581        }
582    }
583    if !buf.is_empty() { Err(Error::READ_EXACT_EOF) } else { Ok(()) }
584}
585
586pub(crate) fn default_read_buf<F>(read: F, mut cursor: BorrowedCursor<'_>) -> Result<()>
587where
588    F: FnOnce(&mut [u8]) -> Result<usize>,
589{
590    let n = read(cursor.ensure_init().init_mut())?;
591    cursor.advance(n);
592    Ok(())
593}
594
595pub(crate) fn default_read_buf_exact<R: Read + ?Sized>(
596    this: &mut R,
597    mut cursor: BorrowedCursor<'_>,
598) -> Result<()> {
599    while cursor.capacity() > 0 {
600        let prev_written = cursor.written();
601        match this.read_buf(cursor.reborrow()) {
602            Ok(()) => {}
603            Err(e) if e.is_interrupted() => continue,
604            Err(e) => return Err(e),
605        }
606
607        if cursor.written() == prev_written {
608            return Err(Error::READ_EXACT_EOF);
609        }
610    }
611
612    Ok(())
613}
614
615pub(crate) fn default_write_fmt<W: Write + ?Sized>(
616    this: &mut W,
617    args: fmt::Arguments<'_>,
618) -> Result<()> {
619    // Create a shim which translates a `Write` to a `fmt::Write` and saves off
620    // I/O errors, instead of discarding them.
621    struct Adapter<'a, T: ?Sized + 'a> {
622        inner: &'a mut T,
623        error: Result<()>,
624    }
625
626    impl<T: Write + ?Sized> fmt::Write for Adapter<'_, T> {
627        fn write_str(&mut self, s: &str) -> fmt::Result {
628            match self.inner.write_all(s.as_bytes()) {
629                Ok(()) => Ok(()),
630                Err(e) => {
631                    self.error = Err(e);
632                    Err(fmt::Error)
633                }
634            }
635        }
636    }
637
638    let mut output = Adapter { inner: this, error: Ok(()) };
639    match fmt::write(&mut output, args) {
640        Ok(()) => Ok(()),
641        Err(..) => {
642            // Check whether the error came from the underlying `Write`.
643            if output.error.is_err() {
644                output.error
645            } else {
646                // This shouldn't happen: the underlying stream did not error,
647                // but somehow the formatter still errored?
648                panic!(
649                    "a formatting trait implementation returned an error when the underlying stream did not"
650                );
651            }
652        }
653    }
654}
655
656/// The `Read` trait allows for reading bytes from a source.
657///
658/// Implementors of the `Read` trait are called 'readers'.
659///
660/// Readers are defined by one required method, [`read()`]. Each call to [`read()`]
661/// will attempt to pull bytes from this source into a provided buffer. A
662/// number of other methods are implemented in terms of [`read()`], giving
663/// implementors a number of ways to read bytes while only needing to implement
664/// a single method.
665///
666/// Readers are intended to be composable with one another. Many implementors
667/// throughout [`std::io`] take and provide types which implement the `Read`
668/// trait.
669///
670/// Please note that each call to [`read()`] may involve a system call, and
671/// therefore, using something that implements [`BufRead`], such as
672/// [`BufReader`], will be more efficient.
673///
674/// Repeated calls to the reader use the same cursor, so for example
675/// calling `read_to_end` twice on a [`File`] will only return the file's
676/// contents once. It's recommended to first call `rewind()` in that case.
677///
678/// # Examples
679///
680/// [`File`]s implement `Read`:
681///
682/// ```no_run
683/// use std::io;
684/// use std::io::prelude::*;
685/// use std::fs::File;
686///
687/// fn main() -> io::Result<()> {
688///     let mut f = File::open("foo.txt")?;
689///     let mut buffer = [0; 10];
690///
691///     // read up to 10 bytes
692///     f.read(&mut buffer)?;
693///
694///     let mut buffer = Vec::new();
695///     // read the whole file
696///     f.read_to_end(&mut buffer)?;
697///
698///     // read into a String, so that you don't need to do the conversion.
699///     let mut buffer = String::new();
700///     f.read_to_string(&mut buffer)?;
701///
702///     // and more! See the other methods for more details.
703///     Ok(())
704/// }
705/// ```
706///
707/// Read from [`&str`] because [`&[u8]`][prim@slice] implements `Read`:
708///
709/// ```no_run
710/// # use std::io;
711/// use std::io::prelude::*;
712///
713/// fn main() -> io::Result<()> {
714///     let mut b = "This string will be read".as_bytes();
715///     let mut buffer = [0; 10];
716///
717///     // read up to 10 bytes
718///     b.read(&mut buffer)?;
719///
720///     // etc... it works exactly as a File does!
721///     Ok(())
722/// }
723/// ```
724///
725/// [`read()`]: Read::read
726/// [`&str`]: prim@str
727/// [`std::io`]: self
728/// [`File`]: crate::fs::File
729#[stable(feature = "rust1", since = "1.0.0")]
730#[doc(notable_trait)]
731#[cfg_attr(not(test), rustc_diagnostic_item = "IoRead")]
732pub trait Read {
733    /// Pull some bytes from this source into the specified buffer, returning
734    /// how many bytes were read.
735    ///
736    /// This function does not provide any guarantees about whether it blocks
737    /// waiting for data, but if an object needs to block for a read and cannot,
738    /// it will typically signal this via an [`Err`] return value.
739    ///
740    /// If the return value of this method is [`Ok(n)`], then implementations must
741    /// guarantee that `0 <= n <= buf.len()`. A nonzero `n` value indicates
742    /// that the buffer `buf` has been filled in with `n` bytes of data from this
743    /// source. If `n` is `0`, then it can indicate one of two scenarios:
744    ///
745    /// 1. This reader has reached its "end of file" and will likely no longer
746    ///    be able to produce bytes. Note that this does not mean that the
747    ///    reader will *always* no longer be able to produce bytes. As an example,
748    ///    on Linux, this method will call the `recv` syscall for a [`TcpStream`],
749    ///    where returning zero indicates the connection was shut down correctly. While
750    ///    for [`File`], it is possible to reach the end of file and get zero as result,
751    ///    but if more data is appended to the file, future calls to `read` will return
752    ///    more data.
753    /// 2. The buffer specified was 0 bytes in length.
754    ///
755    /// It is not an error if the returned value `n` is smaller than the buffer size,
756    /// even when the reader is not at the end of the stream yet.
757    /// This may happen for example because fewer bytes are actually available right now
758    /// (e. g. being close to end-of-file) or because read() was interrupted by a signal.
759    ///
760    /// As this trait is safe to implement, callers in unsafe code cannot rely on
761    /// `n <= buf.len()` for safety.
762    /// Extra care needs to be taken when `unsafe` functions are used to access the read bytes.
763    /// Callers have to ensure that no unchecked out-of-bounds accesses are possible even if
764    /// `n > buf.len()`.
765    ///
766    /// *Implementations* of this method can make no assumptions about the contents of `buf` when
767    /// this function is called. It is recommended that implementations only write data to `buf`
768    /// instead of reading its contents.
769    ///
770    /// Correspondingly, however, *callers* of this method in unsafe code must not assume
771    /// any guarantees about how the implementation uses `buf`. The trait is safe to implement,
772    /// so it is possible that the code that's supposed to write to the buffer might also read
773    /// from it. It is your responsibility to make sure that `buf` is initialized
774    /// before calling `read`. Calling `read` with an uninitialized `buf` (of the kind one
775    /// obtains via [`MaybeUninit<T>`]) is not safe, and can lead to undefined behavior.
776    ///
777    /// [`MaybeUninit<T>`]: crate::mem::MaybeUninit
778    ///
779    /// # Errors
780    ///
781    /// If this function encounters any form of I/O or other error, an error
782    /// variant will be returned. If an error is returned then it must be
783    /// guaranteed that no bytes were read.
784    ///
785    /// An error of the [`ErrorKind::Interrupted`] kind is non-fatal and the read
786    /// operation should be retried if there is nothing else to do.
787    ///
788    /// # Examples
789    ///
790    /// [`File`]s implement `Read`:
791    ///
792    /// [`Ok(n)`]: Ok
793    /// [`File`]: crate::fs::File
794    /// [`TcpStream`]: crate:🥅:TcpStream
795    ///
796    /// ```no_run
797    /// use std::io;
798    /// use std::io::prelude::*;
799    /// use std::fs::File;
800    ///
801    /// fn main() -> io::Result<()> {
802    ///     let mut f = File::open("foo.txt")?;
803    ///     let mut buffer = [0; 10];
804    ///
805    ///     // read up to 10 bytes
806    ///     let n = f.read(&mut buffer[..])?;
807    ///
808    ///     println!("The bytes: {:?}", &buffer[..n]);
809    ///     Ok(())
810    /// }
811    /// ```
812    #[stable(feature = "rust1", since = "1.0.0")]
813    fn read(&mut self, buf: &mut [u8]) -> Result<usize>;
814
815    /// Like `read`, except that it reads into a slice of buffers.
816    ///
817    /// Data is copied to fill each buffer in order, with the final buffer
818    /// written to possibly being only partially filled. This method must
819    /// behave equivalently to a single call to `read` with concatenated
820    /// buffers.
821    ///
822    /// The default implementation calls `read` with either the first nonempty
823    /// buffer provided, or an empty one if none exists.
824    #[stable(feature = "iovec", since = "1.36.0")]
825    fn read_vectored(&mut self, bufs: &mut [IoSliceMut<'_>]) -> Result<usize> {
826        default_read_vectored(|b| self.read(b), bufs)
827    }
828
829    /// Determines if this `Read`er has an efficient `read_vectored`
830    /// implementation.
831    ///
832    /// If a `Read`er does not override the default `read_vectored`
833    /// implementation, code using it may want to avoid the method all together
834    /// and coalesce writes into a single buffer for higher performance.
835    ///
836    /// The default implementation returns `false`.
837    #[unstable(feature = "can_vector", issue = "69941")]
838    fn is_read_vectored(&self) -> bool {
839        false
840    }
841
842    /// Reads all bytes until EOF in this source, placing them into `buf`.
843    ///
844    /// All bytes read from this source will be appended to the specified buffer
845    /// `buf`. This function will continuously call [`read()`] to append more data to
846    /// `buf` until [`read()`] returns either [`Ok(0)`] or an error of
847    /// non-[`ErrorKind::Interrupted`] kind.
848    ///
849    /// If successful, this function will return the total number of bytes read.
850    ///
851    /// # Errors
852    ///
853    /// If this function encounters an error of the kind
854    /// [`ErrorKind::Interrupted`] then the error is ignored and the operation
855    /// will continue.
856    ///
857    /// If any other read error is encountered then this function immediately
858    /// returns. Any bytes which have already been read will be appended to
859    /// `buf`.
860    ///
861    /// # Examples
862    ///
863    /// [`File`]s implement `Read`:
864    ///
865    /// [`read()`]: Read::read
866    /// [`Ok(0)`]: Ok
867    /// [`File`]: crate::fs::File
868    ///
869    /// ```no_run
870    /// use std::io;
871    /// use std::io::prelude::*;
872    /// use std::fs::File;
873    ///
874    /// fn main() -> io::Result<()> {
875    ///     let mut f = File::open("foo.txt")?;
876    ///     let mut buffer = Vec::new();
877    ///
878    ///     // read the whole file
879    ///     f.read_to_end(&mut buffer)?;
880    ///     Ok(())
881    /// }
882    /// ```
883    ///
884    /// (See also the [`std::fs::read`] convenience function for reading from a
885    /// file.)
886    ///
887    /// [`std::fs::read`]: crate::fs::read
888    ///
889    /// ## Implementing `read_to_end`
890    ///
891    /// When implementing the `io::Read` trait, it is recommended to allocate
892    /// memory using [`Vec::try_reserve`]. However, this behavior is not guaranteed
893    /// by all implementations, and `read_to_end` may not handle out-of-memory
894    /// situations gracefully.
895    ///
896    /// ```no_run
897    /// # use std::io::{self, BufRead};
898    /// # struct Example { example_datasource: io::Empty } impl Example {
899    /// # fn get_some_data_for_the_example(&self) -> &'static [u8] { &[] }
900    /// fn read_to_end(&mut self, dest_vec: &mut Vec<u8>) -> io::Result<usize> {
901    ///     let initial_vec_len = dest_vec.len();
902    ///     loop {
903    ///         let src_buf = self.example_datasource.fill_buf()?;
904    ///         if src_buf.is_empty() {
905    ///             break;
906    ///         }
907    ///         dest_vec.try_reserve(src_buf.len())?;
908    ///         dest_vec.extend_from_slice(src_buf);
909    ///
910    ///         // Any irreversible side effects should happen after `try_reserve` succeeds,
911    ///         // to avoid losing data on allocation error.
912    ///         let read = src_buf.len();
913    ///         self.example_datasource.consume(read);
914    ///     }
915    ///     Ok(dest_vec.len() - initial_vec_len)
916    /// }
917    /// # }
918    /// ```
919    ///
920    /// # Usage Notes
921    ///
922    /// `read_to_end` attempts to read a source until EOF, but many sources are continuous streams
923    /// that do not send EOF. In these cases, `read_to_end` will block indefinitely. Standard input
924    /// is one such stream which may be finite if piped, but is typically continuous. For example,
925    /// `cat file | my-rust-program` will correctly terminate with an `EOF` upon closure of cat.
926    /// Reading user input or running programs that remain open indefinitely will never terminate
927    /// the stream with `EOF` (e.g. `yes | my-rust-program`).
928    ///
929    /// Using `.lines()` with a [`BufReader`] or using [`read`] can provide a better solution
930    ///
931    ///[`read`]: Read::read
932    ///
933    /// [`Vec::try_reserve`]: crate::vec::Vec::try_reserve
934    #[stable(feature = "rust1", since = "1.0.0")]
935    fn read_to_end(&mut self, buf: &mut Vec<u8>) -> Result<usize> {
936        default_read_to_end(self, buf, None)
937    }
938
939    /// Reads all bytes until EOF in this source, appending them to `buf`.
940    ///
941    /// If successful, this function returns the number of bytes which were read
942    /// and appended to `buf`.
943    ///
944    /// # Errors
945    ///
946    /// If the data in this stream is *not* valid UTF-8 then an error is
947    /// returned and `buf` is unchanged.
948    ///
949    /// See [`read_to_end`] for other error semantics.
950    ///
951    /// [`read_to_end`]: Read::read_to_end
952    ///
953    /// # Examples
954    ///
955    /// [`File`]s implement `Read`:
956    ///
957    /// [`File`]: crate::fs::File
958    ///
959    /// ```no_run
960    /// use std::io;
961    /// use std::io::prelude::*;
962    /// use std::fs::File;
963    ///
964    /// fn main() -> io::Result<()> {
965    ///     let mut f = File::open("foo.txt")?;
966    ///     let mut buffer = String::new();
967    ///
968    ///     f.read_to_string(&mut buffer)?;
969    ///     Ok(())
970    /// }
971    /// ```
972    ///
973    /// (See also the [`std::fs::read_to_string`] convenience function for
974    /// reading from a file.)
975    ///
976    /// # Usage Notes
977    ///
978    /// `read_to_string` attempts to read a source until EOF, but many sources are continuous streams
979    /// that do not send EOF. In these cases, `read_to_string` will block indefinitely. Standard input
980    /// is one such stream which may be finite if piped, but is typically continuous. For example,
981    /// `cat file | my-rust-program` will correctly terminate with an `EOF` upon closure of cat.
982    /// Reading user input or running programs that remain open indefinitely will never terminate
983    /// the stream with `EOF` (e.g. `yes | my-rust-program`).
984    ///
985    /// Using `.lines()` with a [`BufReader`] or using [`read`] can provide a better solution
986    ///
987    ///[`read`]: Read::read
988    ///
989    /// [`std::fs::read_to_string`]: crate::fs::read_to_string
990    #[stable(feature = "rust1", since = "1.0.0")]
991    fn read_to_string(&mut self, buf: &mut String) -> Result<usize> {
992        default_read_to_string(self, buf, None)
993    }
994
995    /// Reads the exact number of bytes required to fill `buf`.
996    ///
997    /// This function reads as many bytes as necessary to completely fill the
998    /// specified buffer `buf`.
999    ///
1000    /// *Implementations* of this method can make no assumptions about the contents of `buf` when
1001    /// this function is called. It is recommended that implementations only write data to `buf`
1002    /// instead of reading its contents. The documentation on [`read`] has a more detailed
1003    /// explanation of this subject.
1004    ///
1005    /// # Errors
1006    ///
1007    /// If this function encounters an error of the kind
1008    /// [`ErrorKind::Interrupted`] then the error is ignored and the operation
1009    /// will continue.
1010    ///
1011    /// If this function encounters an "end of file" before completely filling
1012    /// the buffer, it returns an error of the kind [`ErrorKind::UnexpectedEof`].
1013    /// The contents of `buf` are unspecified in this case.
1014    ///
1015    /// If any other read error is encountered then this function immediately
1016    /// returns. The contents of `buf` are unspecified in this case.
1017    ///
1018    /// If this function returns an error, it is unspecified how many bytes it
1019    /// has read, but it will never read more than would be necessary to
1020    /// completely fill the buffer.
1021    ///
1022    /// # Examples
1023    ///
1024    /// [`File`]s implement `Read`:
1025    ///
1026    /// [`read`]: Read::read
1027    /// [`File`]: crate::fs::File
1028    ///
1029    /// ```no_run
1030    /// use std::io;
1031    /// use std::io::prelude::*;
1032    /// use std::fs::File;
1033    ///
1034    /// fn main() -> io::Result<()> {
1035    ///     let mut f = File::open("foo.txt")?;
1036    ///     let mut buffer = [0; 10];
1037    ///
1038    ///     // read exactly 10 bytes
1039    ///     f.read_exact(&mut buffer)?;
1040    ///     Ok(())
1041    /// }
1042    /// ```
1043    #[stable(feature = "read_exact", since = "1.6.0")]
1044    fn read_exact(&mut self, buf: &mut [u8]) -> Result<()> {
1045        default_read_exact(self, buf)
1046    }
1047
1048    /// Pull some bytes from this source into the specified buffer.
1049    ///
1050    /// This is equivalent to the [`read`](Read::read) method, except that it is passed a [`BorrowedCursor`] rather than `[u8]` to allow use
1051    /// with uninitialized buffers. The new data will be appended to any existing contents of `buf`.
1052    ///
1053    /// The default implementation delegates to `read`.
1054    ///
1055    /// This method makes it possible to return both data and an error but it is advised against.
1056    #[unstable(feature = "read_buf", issue = "78485")]
1057    fn read_buf(&mut self, buf: BorrowedCursor<'_>) -> Result<()> {
1058        default_read_buf(|b| self.read(b), buf)
1059    }
1060
1061    /// Reads the exact number of bytes required to fill `cursor`.
1062    ///
1063    /// This is similar to the [`read_exact`](Read::read_exact) method, except
1064    /// that it is passed a [`BorrowedCursor`] rather than `[u8]` to allow use
1065    /// with uninitialized buffers.
1066    ///
1067    /// # Errors
1068    ///
1069    /// If this function encounters an error of the kind [`ErrorKind::Interrupted`]
1070    /// then the error is ignored and the operation will continue.
1071    ///
1072    /// If this function encounters an "end of file" before completely filling
1073    /// the buffer, it returns an error of the kind [`ErrorKind::UnexpectedEof`].
1074    ///
1075    /// If any other read error is encountered then this function immediately
1076    /// returns.
1077    ///
1078    /// If this function returns an error, all bytes read will be appended to `cursor`.
1079    #[unstable(feature = "read_buf", issue = "78485")]
1080    fn read_buf_exact(&mut self, cursor: BorrowedCursor<'_>) -> Result<()> {
1081        default_read_buf_exact(self, cursor)
1082    }
1083
1084    /// Creates a "by reference" adaptor for this instance of `Read`.
1085    ///
1086    /// The returned adapter also implements `Read` and will simply borrow this
1087    /// current reader.
1088    ///
1089    /// # Examples
1090    ///
1091    /// [`File`]s implement `Read`:
1092    ///
1093    /// [`File`]: crate::fs::File
1094    ///
1095    /// ```no_run
1096    /// use std::io;
1097    /// use std::io::Read;
1098    /// use std::fs::File;
1099    ///
1100    /// fn main() -> io::Result<()> {
1101    ///     let mut f = File::open("foo.txt")?;
1102    ///     let mut buffer = Vec::new();
1103    ///     let mut other_buffer = Vec::new();
1104    ///
1105    ///     {
1106    ///         let reference = f.by_ref();
1107    ///
1108    ///         // read at most 5 bytes
1109    ///         reference.take(5).read_to_end(&mut buffer)?;
1110    ///
1111    ///     } // drop our &mut reference so we can use f again
1112    ///
1113    ///     // original file still usable, read the rest
1114    ///     f.read_to_end(&mut other_buffer)?;
1115    ///     Ok(())
1116    /// }
1117    /// ```
1118    #[stable(feature = "rust1", since = "1.0.0")]
1119    fn by_ref(&mut self) -> &mut Self
1120    where
1121        Self: Sized,
1122    {
1123        self
1124    }
1125
1126    /// Transforms this `Read` instance to an [`Iterator`] over its bytes.
1127    ///
1128    /// The returned type implements [`Iterator`] where the [`Item`] is
1129    /// <code>[Result]<[u8], [io::Error]></code>.
1130    /// The yielded item is [`Ok`] if a byte was successfully read and [`Err`]
1131    /// otherwise. EOF is mapped to returning [`None`] from this iterator.
1132    ///
1133    /// The default implementation calls `read` for each byte,
1134    /// which can be very inefficient for data that's not in memory,
1135    /// such as [`File`]. Consider using a [`BufReader`] in such cases.
1136    ///
1137    /// # Examples
1138    ///
1139    /// [`File`]s implement `Read`:
1140    ///
1141    /// [`Item`]: Iterator::Item
1142    /// [`File`]: crate::fs::File "fs::File"
1143    /// [Result]: crate::result::Result "Result"
1144    /// [io::Error]: self::Error "io::Error"
1145    ///
1146    /// ```no_run
1147    /// use std::io;
1148    /// use std::io::prelude::*;
1149    /// use std::io::BufReader;
1150    /// use std::fs::File;
1151    ///
1152    /// fn main() -> io::Result<()> {
1153    ///     let f = BufReader::new(File::open("foo.txt")?);
1154    ///
1155    ///     for byte in f.bytes() {
1156    ///         println!("{}", byte?);
1157    ///     }
1158    ///     Ok(())
1159    /// }
1160    /// ```
1161    #[stable(feature = "rust1", since = "1.0.0")]
1162    fn bytes(self) -> Bytes<Self>
1163    where
1164        Self: Sized,
1165    {
1166        Bytes { inner: self }
1167    }
1168
1169    /// Creates an adapter which will chain this stream with another.
1170    ///
1171    /// The returned `Read` instance will first read all bytes from this object
1172    /// until EOF is encountered. Afterwards the output is equivalent to the
1173    /// output of `next`.
1174    ///
1175    /// # Examples
1176    ///
1177    /// [`File`]s implement `Read`:
1178    ///
1179    /// [`File`]: crate::fs::File
1180    ///
1181    /// ```no_run
1182    /// use std::io;
1183    /// use std::io::prelude::*;
1184    /// use std::fs::File;
1185    ///
1186    /// fn main() -> io::Result<()> {
1187    ///     let f1 = File::open("foo.txt")?;
1188    ///     let f2 = File::open("bar.txt")?;
1189    ///
1190    ///     let mut handle = f1.chain(f2);
1191    ///     let mut buffer = String::new();
1192    ///
1193    ///     // read the value into a String. We could use any Read method here,
1194    ///     // this is just one example.
1195    ///     handle.read_to_string(&mut buffer)?;
1196    ///     Ok(())
1197    /// }
1198    /// ```
1199    #[stable(feature = "rust1", since = "1.0.0")]
1200    fn chain<R: Read>(self, next: R) -> Chain<Self, R>
1201    where
1202        Self: Sized,
1203    {
1204        Chain { first: self, second: next, done_first: false }
1205    }
1206
1207    /// Creates an adapter which will read at most `limit` bytes from it.
1208    ///
1209    /// This function returns a new instance of `Read` which will read at most
1210    /// `limit` bytes, after which it will always return EOF ([`Ok(0)`]). Any
1211    /// read errors will not count towards the number of bytes read and future
1212    /// calls to [`read()`] may succeed.
1213    ///
1214    /// # Examples
1215    ///
1216    /// [`File`]s implement `Read`:
1217    ///
1218    /// [`File`]: crate::fs::File
1219    /// [`Ok(0)`]: Ok
1220    /// [`read()`]: Read::read
1221    ///
1222    /// ```no_run
1223    /// use std::io;
1224    /// use std::io::prelude::*;
1225    /// use std::fs::File;
1226    ///
1227    /// fn main() -> io::Result<()> {
1228    ///     let f = File::open("foo.txt")?;
1229    ///     let mut buffer = [0; 5];
1230    ///
1231    ///     // read at most five bytes
1232    ///     let mut handle = f.take(5);
1233    ///
1234    ///     handle.read(&mut buffer)?;
1235    ///     Ok(())
1236    /// }
1237    /// ```
1238    #[stable(feature = "rust1", since = "1.0.0")]
1239    fn take(self, limit: u64) -> Take<Self>
1240    where
1241        Self: Sized,
1242    {
1243        Take { inner: self, len: limit, limit }
1244    }
1245}
1246
1247/// Reads all bytes from a [reader][Read] into a new [`String`].
1248///
1249/// This is a convenience function for [`Read::read_to_string`]. Using this
1250/// function avoids having to create a variable first and provides more type
1251/// safety since you can only get the buffer out if there were no errors. (If you
1252/// use [`Read::read_to_string`] you have to remember to check whether the read
1253/// succeeded because otherwise your buffer will be empty or only partially full.)
1254///
1255/// # Performance
1256///
1257/// The downside of this function's increased ease of use and type safety is
1258/// that it gives you less control over performance. For example, you can't
1259/// pre-allocate memory like you can using [`String::with_capacity`] and
1260/// [`Read::read_to_string`]. Also, you can't re-use the buffer if an error
1261/// occurs while reading.
1262///
1263/// In many cases, this function's performance will be adequate and the ease of use
1264/// and type safety tradeoffs will be worth it. However, there are cases where you
1265/// need more control over performance, and in those cases you should definitely use
1266/// [`Read::read_to_string`] directly.
1267///
1268/// Note that in some special cases, such as when reading files, this function will
1269/// pre-allocate memory based on the size of the input it is reading. In those
1270/// cases, the performance should be as good as if you had used
1271/// [`Read::read_to_string`] with a manually pre-allocated buffer.
1272///
1273/// # Errors
1274///
1275/// This function forces you to handle errors because the output (the `String`)
1276/// is wrapped in a [`Result`]. See [`Read::read_to_string`] for the errors
1277/// that can occur. If any error occurs, you will get an [`Err`], so you
1278/// don't have to worry about your buffer being empty or partially full.
1279///
1280/// # Examples
1281///
1282/// ```no_run
1283/// # use std::io;
1284/// fn main() -> io::Result<()> {
1285///     let stdin = io::read_to_string(io::stdin())?;
1286///     println!("Stdin was:");
1287///     println!("{stdin}");
1288///     Ok(())
1289/// }
1290/// ```
1291///
1292/// # Usage Notes
1293///
1294/// `read_to_string` attempts to read a source until EOF, but many sources are continuous streams
1295/// that do not send EOF. In these cases, `read_to_string` will block indefinitely. Standard input
1296/// is one such stream which may be finite if piped, but is typically continuous. For example,
1297/// `cat file | my-rust-program` will correctly terminate with an `EOF` upon closure of cat.
1298/// Reading user input or running programs that remain open indefinitely will never terminate
1299/// the stream with `EOF` (e.g. `yes | my-rust-program`).
1300///
1301/// Using `.lines()` with a [`BufReader`] or using [`read`] can provide a better solution
1302///
1303///[`read`]: Read::read
1304///
1305#[stable(feature = "io_read_to_string", since = "1.65.0")]
1306pub fn read_to_string<R: Read>(mut reader: R) -> Result<String> {
1307    let mut buf = String::new();
1308    reader.read_to_string(&mut buf)?;
1309    Ok(buf)
1310}
1311
1312/// A buffer type used with `Read::read_vectored`.
1313///
1314/// It is semantically a wrapper around a `&mut [u8]`, but is guaranteed to be
1315/// ABI compatible with the `iovec` type on Unix platforms and `WSABUF` on
1316/// Windows.
1317#[stable(feature = "iovec", since = "1.36.0")]
1318#[repr(transparent)]
1319pub struct IoSliceMut<'a>(sys::io::IoSliceMut<'a>);
1320
1321#[stable(feature = "iovec_send_sync", since = "1.44.0")]
1322unsafe impl<'a> Send for IoSliceMut<'a> {}
1323
1324#[stable(feature = "iovec_send_sync", since = "1.44.0")]
1325unsafe impl<'a> Sync for IoSliceMut<'a> {}
1326
1327#[stable(feature = "iovec", since = "1.36.0")]
1328impl<'a> fmt::Debug for IoSliceMut<'a> {
1329    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1330        fmt::Debug::fmt(self.0.as_slice(), fmt)
1331    }
1332}
1333
1334impl<'a> IoSliceMut<'a> {
1335    /// Creates a new `IoSliceMut` wrapping a byte slice.
1336    ///
1337    /// # Panics
1338    ///
1339    /// Panics on Windows if the slice is larger than 4GB.
1340    #[stable(feature = "iovec", since = "1.36.0")]
1341    #[inline]
1342    pub fn new(buf: &'a mut [u8]) -> IoSliceMut<'a> {
1343        IoSliceMut(sys::io::IoSliceMut::new(buf))
1344    }
1345
1346    /// Advance the internal cursor of the slice.
1347    ///
1348    /// Also see [`IoSliceMut::advance_slices`] to advance the cursors of
1349    /// multiple buffers.
1350    ///
1351    /// # Panics
1352    ///
1353    /// Panics when trying to advance beyond the end of the slice.
1354    ///
1355    /// # Examples
1356    ///
1357    /// ```
1358    /// use std::io::IoSliceMut;
1359    /// use std::ops::Deref;
1360    ///
1361    /// let mut data = [1; 8];
1362    /// let mut buf = IoSliceMut::new(&mut data);
1363    ///
1364    /// // Mark 3 bytes as read.
1365    /// buf.advance(3);
1366    /// assert_eq!(buf.deref(), [1; 5].as_ref());
1367    /// ```
1368    #[stable(feature = "io_slice_advance", since = "1.81.0")]
1369    #[inline]
1370    pub fn advance(&mut self, n: usize) {
1371        self.0.advance(n)
1372    }
1373
1374    /// Advance a slice of slices.
1375    ///
1376    /// Shrinks the slice to remove any `IoSliceMut`s that are fully advanced over.
1377    /// If the cursor ends up in the middle of an `IoSliceMut`, it is modified
1378    /// to start at that cursor.
1379    ///
1380    /// For example, if we have a slice of two 8-byte `IoSliceMut`s, and we advance by 10 bytes,
1381    /// the result will only include the second `IoSliceMut`, advanced by 2 bytes.
1382    ///
1383    /// # Panics
1384    ///
1385    /// Panics when trying to advance beyond the end of the slices.
1386    ///
1387    /// # Examples
1388    ///
1389    /// ```
1390    /// use std::io::IoSliceMut;
1391    /// use std::ops::Deref;
1392    ///
1393    /// let mut buf1 = [1; 8];
1394    /// let mut buf2 = [2; 16];
1395    /// let mut buf3 = [3; 8];
1396    /// let mut bufs = &mut [
1397    ///     IoSliceMut::new(&mut buf1),
1398    ///     IoSliceMut::new(&mut buf2),
1399    ///     IoSliceMut::new(&mut buf3),
1400    /// ][..];
1401    ///
1402    /// // Mark 10 bytes as read.
1403    /// IoSliceMut::advance_slices(&mut bufs, 10);
1404    /// assert_eq!(bufs[0].deref(), [2; 14].as_ref());
1405    /// assert_eq!(bufs[1].deref(), [3; 8].as_ref());
1406    /// ```
1407    #[stable(feature = "io_slice_advance", since = "1.81.0")]
1408    #[inline]
1409    pub fn advance_slices(bufs: &mut &mut [IoSliceMut<'a>], n: usize) {
1410        // Number of buffers to remove.
1411        let mut remove = 0;
1412        // Remaining length before reaching n.
1413        let mut left = n;
1414        for buf in bufs.iter() {
1415            if let Some(remainder) = left.checked_sub(buf.len()) {
1416                left = remainder;
1417                remove += 1;
1418            } else {
1419                break;
1420            }
1421        }
1422
1423        *bufs = &mut take(bufs)[remove..];
1424        if bufs.is_empty() {
1425            assert!(left == 0, "advancing io slices beyond their length");
1426        } else {
1427            bufs[0].advance(left);
1428        }
1429    }
1430
1431    /// Get the underlying bytes as a mutable slice with the original lifetime.
1432    ///
1433    /// # Examples
1434    ///
1435    /// ```
1436    /// #![feature(io_slice_as_bytes)]
1437    /// use std::io::IoSliceMut;
1438    ///
1439    /// let mut data = *b"abcdef";
1440    /// let io_slice = IoSliceMut::new(&mut data);
1441    /// io_slice.into_slice()[0] = b'A';
1442    ///
1443    /// assert_eq!(&data, b"Abcdef");
1444    /// ```
1445    #[unstable(feature = "io_slice_as_bytes", issue = "132818")]
1446    pub const fn into_slice(self) -> &'a mut [u8] {
1447        self.0.into_slice()
1448    }
1449}
1450
1451#[stable(feature = "iovec", since = "1.36.0")]
1452impl<'a> Deref for IoSliceMut<'a> {
1453    type Target = [u8];
1454
1455    #[inline]
1456    fn deref(&self) -> &[u8] {
1457        self.0.as_slice()
1458    }
1459}
1460
1461#[stable(feature = "iovec", since = "1.36.0")]
1462impl<'a> DerefMut for IoSliceMut<'a> {
1463    #[inline]
1464    fn deref_mut(&mut self) -> &mut [u8] {
1465        self.0.as_mut_slice()
1466    }
1467}
1468
1469/// A buffer type used with `Write::write_vectored`.
1470///
1471/// It is semantically a wrapper around a `&[u8]`, but is guaranteed to be
1472/// ABI compatible with the `iovec` type on Unix platforms and `WSABUF` on
1473/// Windows.
1474#[stable(feature = "iovec", since = "1.36.0")]
1475#[derive(Copy, Clone)]
1476#[repr(transparent)]
1477pub struct IoSlice<'a>(sys::io::IoSlice<'a>);
1478
1479#[stable(feature = "iovec_send_sync", since = "1.44.0")]
1480unsafe impl<'a> Send for IoSlice<'a> {}
1481
1482#[stable(feature = "iovec_send_sync", since = "1.44.0")]
1483unsafe impl<'a> Sync for IoSlice<'a> {}
1484
1485#[stable(feature = "iovec", since = "1.36.0")]
1486impl<'a> fmt::Debug for IoSlice<'a> {
1487    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1488        fmt::Debug::fmt(self.0.as_slice(), fmt)
1489    }
1490}
1491
1492impl<'a> IoSlice<'a> {
1493    /// Creates a new `IoSlice` wrapping a byte slice.
1494    ///
1495    /// # Panics
1496    ///
1497    /// Panics on Windows if the slice is larger than 4GB.
1498    #[stable(feature = "iovec", since = "1.36.0")]
1499    #[must_use]
1500    #[inline]
1501    pub fn new(buf: &'a [u8]) -> IoSlice<'a> {
1502        IoSlice(sys::io::IoSlice::new(buf))
1503    }
1504
1505    /// Advance the internal cursor of the slice.
1506    ///
1507    /// Also see [`IoSlice::advance_slices`] to advance the cursors of multiple
1508    /// buffers.
1509    ///
1510    /// # Panics
1511    ///
1512    /// Panics when trying to advance beyond the end of the slice.
1513    ///
1514    /// # Examples
1515    ///
1516    /// ```
1517    /// use std::io::IoSlice;
1518    /// use std::ops::Deref;
1519    ///
1520    /// let data = [1; 8];
1521    /// let mut buf = IoSlice::new(&data);
1522    ///
1523    /// // Mark 3 bytes as read.
1524    /// buf.advance(3);
1525    /// assert_eq!(buf.deref(), [1; 5].as_ref());
1526    /// ```
1527    #[stable(feature = "io_slice_advance", since = "1.81.0")]
1528    #[inline]
1529    pub fn advance(&mut self, n: usize) {
1530        self.0.advance(n)
1531    }
1532
1533    /// Advance a slice of slices.
1534    ///
1535    /// Shrinks the slice to remove any `IoSlice`s that are fully advanced over.
1536    /// If the cursor ends up in the middle of an `IoSlice`, it is modified
1537    /// to start at that cursor.
1538    ///
1539    /// For example, if we have a slice of two 8-byte `IoSlice`s, and we advance by 10 bytes,
1540    /// the result will only include the second `IoSlice`, advanced by 2 bytes.
1541    ///
1542    /// # Panics
1543    ///
1544    /// Panics when trying to advance beyond the end of the slices.
1545    ///
1546    /// # Examples
1547    ///
1548    /// ```
1549    /// use std::io::IoSlice;
1550    /// use std::ops::Deref;
1551    ///
1552    /// let buf1 = [1; 8];
1553    /// let buf2 = [2; 16];
1554    /// let buf3 = [3; 8];
1555    /// let mut bufs = &mut [
1556    ///     IoSlice::new(&buf1),
1557    ///     IoSlice::new(&buf2),
1558    ///     IoSlice::new(&buf3),
1559    /// ][..];
1560    ///
1561    /// // Mark 10 bytes as written.
1562    /// IoSlice::advance_slices(&mut bufs, 10);
1563    /// assert_eq!(bufs[0].deref(), [2; 14].as_ref());
1564    /// assert_eq!(bufs[1].deref(), [3; 8].as_ref());
1565    #[stable(feature = "io_slice_advance", since = "1.81.0")]
1566    #[inline]
1567    pub fn advance_slices(bufs: &mut &mut [IoSlice<'a>], n: usize) {
1568        // Number of buffers to remove.
1569        let mut remove = 0;
1570        // Remaining length before reaching n. This prevents overflow
1571        // that could happen if the length of slices in `bufs` were instead
1572        // accumulated. Those slice may be aliased and, if they are large
1573        // enough, their added length may overflow a `usize`.
1574        let mut left = n;
1575        for buf in bufs.iter() {
1576            if let Some(remainder) = left.checked_sub(buf.len()) {
1577                left = remainder;
1578                remove += 1;
1579            } else {
1580                break;
1581            }
1582        }
1583
1584        *bufs = &mut take(bufs)[remove..];
1585        if bufs.is_empty() {
1586            assert!(left == 0, "advancing io slices beyond their length");
1587        } else {
1588            bufs[0].advance(left);
1589        }
1590    }
1591
1592    /// Get the underlying bytes as a slice with the original lifetime.
1593    ///
1594    /// This doesn't borrow from `self`, so is less restrictive than calling
1595    /// `.deref()`, which does.
1596    ///
1597    /// # Examples
1598    ///
1599    /// ```
1600    /// #![feature(io_slice_as_bytes)]
1601    /// use std::io::IoSlice;
1602    ///
1603    /// let data = b"abcdef";
1604    ///
1605    /// let mut io_slice = IoSlice::new(data);
1606    /// let tail = &io_slice.as_slice()[3..];
1607    ///
1608    /// // This works because `tail` doesn't borrow `io_slice`
1609    /// io_slice = IoSlice::new(tail);
1610    ///
1611    /// assert_eq!(io_slice.as_slice(), b"def");
1612    /// ```
1613    #[unstable(feature = "io_slice_as_bytes", issue = "132818")]
1614    pub const fn as_slice(self) -> &'a [u8] {
1615        self.0.as_slice()
1616    }
1617}
1618
1619#[stable(feature = "iovec", since = "1.36.0")]
1620impl<'a> Deref for IoSlice<'a> {
1621    type Target = [u8];
1622
1623    #[inline]
1624    fn deref(&self) -> &[u8] {
1625        self.0.as_slice()
1626    }
1627}
1628
1629/// A trait for objects which are byte-oriented sinks.
1630///
1631/// Implementors of the `Write` trait are sometimes called 'writers'.
1632///
1633/// Writers are defined by two required methods, [`write`] and [`flush`]:
1634///
1635/// * The [`write`] method will attempt to write some data into the object,
1636///   returning how many bytes were successfully written.
1637///
1638/// * The [`flush`] method is useful for adapters and explicit buffers
1639///   themselves for ensuring that all buffered data has been pushed out to the
1640///   'true sink'.
1641///
1642/// Writers are intended to be composable with one another. Many implementors
1643/// throughout [`std::io`] take and provide types which implement the `Write`
1644/// trait.
1645///
1646/// [`write`]: Write::write
1647/// [`flush`]: Write::flush
1648/// [`std::io`]: self
1649///
1650/// # Examples
1651///
1652/// ```no_run
1653/// use std::io::prelude::*;
1654/// use std::fs::File;
1655///
1656/// fn main() -> std::io::Result<()> {
1657///     let data = b"some bytes";
1658///
1659///     let mut pos = 0;
1660///     let mut buffer = File::create("foo.txt")?;
1661///
1662///     while pos < data.len() {
1663///         let bytes_written = buffer.write(&data[pos..])?;
1664///         pos += bytes_written;
1665///     }
1666///     Ok(())
1667/// }
1668/// ```
1669///
1670/// The trait also provides convenience methods like [`write_all`], which calls
1671/// `write` in a loop until its entire input has been written.
1672///
1673/// [`write_all`]: Write::write_all
1674#[stable(feature = "rust1", since = "1.0.0")]
1675#[doc(notable_trait)]
1676#[cfg_attr(not(test), rustc_diagnostic_item = "IoWrite")]
1677pub trait Write {
1678    /// Writes a buffer into this writer, returning how many bytes were written.
1679    ///
1680    /// This function will attempt to write the entire contents of `buf`, but
1681    /// the entire write might not succeed, or the write may also generate an
1682    /// error. Typically, a call to `write` represents one attempt to write to
1683    /// any wrapped object.
1684    ///
1685    /// Calls to `write` are not guaranteed to block waiting for data to be
1686    /// written, and a write which would otherwise block can be indicated through
1687    /// an [`Err`] variant.
1688    ///
1689    /// If this method consumed `n > 0` bytes of `buf` it must return [`Ok(n)`].
1690    /// If the return value is `Ok(n)` then `n` must satisfy `n <= buf.len()`.
1691    /// A return value of `Ok(0)` typically means that the underlying object is
1692    /// no longer able to accept bytes and will likely not be able to in the
1693    /// future as well, or that the buffer provided is empty.
1694    ///
1695    /// # Errors
1696    ///
1697    /// Each call to `write` may generate an I/O error indicating that the
1698    /// operation could not be completed. If an error is returned then no bytes
1699    /// in the buffer were written to this writer.
1700    ///
1701    /// It is **not** considered an error if the entire buffer could not be
1702    /// written to this writer.
1703    ///
1704    /// An error of the [`ErrorKind::Interrupted`] kind is non-fatal and the
1705    /// write operation should be retried if there is nothing else to do.
1706    ///
1707    /// # Examples
1708    ///
1709    /// ```no_run
1710    /// use std::io::prelude::*;
1711    /// use std::fs::File;
1712    ///
1713    /// fn main() -> std::io::Result<()> {
1714    ///     let mut buffer = File::create("foo.txt")?;
1715    ///
1716    ///     // Writes some prefix of the byte string, not necessarily all of it.
1717    ///     buffer.write(b"some bytes")?;
1718    ///     Ok(())
1719    /// }
1720    /// ```
1721    ///
1722    /// [`Ok(n)`]: Ok
1723    #[stable(feature = "rust1", since = "1.0.0")]
1724    fn write(&mut self, buf: &[u8]) -> Result<usize>;
1725
1726    /// Like [`write`], except that it writes from a slice of buffers.
1727    ///
1728    /// Data is copied from each buffer in order, with the final buffer
1729    /// read from possibly being only partially consumed. This method must
1730    /// behave as a call to [`write`] with the buffers concatenated would.
1731    ///
1732    /// The default implementation calls [`write`] with either the first nonempty
1733    /// buffer provided, or an empty one if none exists.
1734    ///
1735    /// # Examples
1736    ///
1737    /// ```no_run
1738    /// use std::io::IoSlice;
1739    /// use std::io::prelude::*;
1740    /// use std::fs::File;
1741    ///
1742    /// fn main() -> std::io::Result<()> {
1743    ///     let data1 = [1; 8];
1744    ///     let data2 = [15; 8];
1745    ///     let io_slice1 = IoSlice::new(&data1);
1746    ///     let io_slice2 = IoSlice::new(&data2);
1747    ///
1748    ///     let mut buffer = File::create("foo.txt")?;
1749    ///
1750    ///     // Writes some prefix of the byte string, not necessarily all of it.
1751    ///     buffer.write_vectored(&[io_slice1, io_slice2])?;
1752    ///     Ok(())
1753    /// }
1754    /// ```
1755    ///
1756    /// [`write`]: Write::write
1757    #[stable(feature = "iovec", since = "1.36.0")]
1758    fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> Result<usize> {
1759        default_write_vectored(|b| self.write(b), bufs)
1760    }
1761
1762    /// Determines if this `Write`r has an efficient [`write_vectored`]
1763    /// implementation.
1764    ///
1765    /// If a `Write`r does not override the default [`write_vectored`]
1766    /// implementation, code using it may want to avoid the method all together
1767    /// and coalesce writes into a single buffer for higher performance.
1768    ///
1769    /// The default implementation returns `false`.
1770    ///
1771    /// [`write_vectored`]: Write::write_vectored
1772    #[unstable(feature = "can_vector", issue = "69941")]
1773    fn is_write_vectored(&self) -> bool {
1774        false
1775    }
1776
1777    /// Flushes this output stream, ensuring that all intermediately buffered
1778    /// contents reach their destination.
1779    ///
1780    /// # Errors
1781    ///
1782    /// It is considered an error if not all bytes could be written due to
1783    /// I/O errors or EOF being reached.
1784    ///
1785    /// # Examples
1786    ///
1787    /// ```no_run
1788    /// use std::io::prelude::*;
1789    /// use std::io::BufWriter;
1790    /// use std::fs::File;
1791    ///
1792    /// fn main() -> std::io::Result<()> {
1793    ///     let mut buffer = BufWriter::new(File::create("foo.txt")?);
1794    ///
1795    ///     buffer.write_all(b"some bytes")?;
1796    ///     buffer.flush()?;
1797    ///     Ok(())
1798    /// }
1799    /// ```
1800    #[stable(feature = "rust1", since = "1.0.0")]
1801    fn flush(&mut self) -> Result<()>;
1802
1803    /// Attempts to write an entire buffer into this writer.
1804    ///
1805    /// This method will continuously call [`write`] until there is no more data
1806    /// to be written or an error of non-[`ErrorKind::Interrupted`] kind is
1807    /// returned. This method will not return until the entire buffer has been
1808    /// successfully written or such an error occurs. The first error that is
1809    /// not of [`ErrorKind::Interrupted`] kind generated from this method will be
1810    /// returned.
1811    ///
1812    /// If the buffer contains no data, this will never call [`write`].
1813    ///
1814    /// # Errors
1815    ///
1816    /// This function will return the first error of
1817    /// non-[`ErrorKind::Interrupted`] kind that [`write`] returns.
1818    ///
1819    /// [`write`]: Write::write
1820    ///
1821    /// # Examples
1822    ///
1823    /// ```no_run
1824    /// use std::io::prelude::*;
1825    /// use std::fs::File;
1826    ///
1827    /// fn main() -> std::io::Result<()> {
1828    ///     let mut buffer = File::create("foo.txt")?;
1829    ///
1830    ///     buffer.write_all(b"some bytes")?;
1831    ///     Ok(())
1832    /// }
1833    /// ```
1834    #[stable(feature = "rust1", since = "1.0.0")]
1835    fn write_all(&mut self, mut buf: &[u8]) -> Result<()> {
1836        while !buf.is_empty() {
1837            match self.write(buf) {
1838                Ok(0) => {
1839                    return Err(Error::WRITE_ALL_EOF);
1840                }
1841                Ok(n) => buf = &buf[n..],
1842                Err(ref e) if e.is_interrupted() => {}
1843                Err(e) => return Err(e),
1844            }
1845        }
1846        Ok(())
1847    }
1848
1849    /// Attempts to write multiple buffers into this writer.
1850    ///
1851    /// This method will continuously call [`write_vectored`] until there is no
1852    /// more data to be written or an error of non-[`ErrorKind::Interrupted`]
1853    /// kind is returned. This method will not return until all buffers have
1854    /// been successfully written or such an error occurs. The first error that
1855    /// is not of [`ErrorKind::Interrupted`] kind generated from this method
1856    /// will be returned.
1857    ///
1858    /// If the buffer contains no data, this will never call [`write_vectored`].
1859    ///
1860    /// # Notes
1861    ///
1862    /// Unlike [`write_vectored`], this takes a *mutable* reference to
1863    /// a slice of [`IoSlice`]s, not an immutable one. That's because we need to
1864    /// modify the slice to keep track of the bytes already written.
1865    ///
1866    /// Once this function returns, the contents of `bufs` are unspecified, as
1867    /// this depends on how many calls to [`write_vectored`] were necessary. It is
1868    /// best to understand this function as taking ownership of `bufs` and to
1869    /// not use `bufs` afterwards. The underlying buffers, to which the
1870    /// [`IoSlice`]s point (but not the [`IoSlice`]s themselves), are unchanged and
1871    /// can be reused.
1872    ///
1873    /// [`write_vectored`]: Write::write_vectored
1874    ///
1875    /// # Examples
1876    ///
1877    /// ```
1878    /// #![feature(write_all_vectored)]
1879    /// # fn main() -> std::io::Result<()> {
1880    ///
1881    /// use std::io::{Write, IoSlice};
1882    ///
1883    /// let mut writer = Vec::new();
1884    /// let bufs = &mut [
1885    ///     IoSlice::new(&[1]),
1886    ///     IoSlice::new(&[2, 3]),
1887    ///     IoSlice::new(&[4, 5, 6]),
1888    /// ];
1889    ///
1890    /// writer.write_all_vectored(bufs)?;
1891    /// // Note: the contents of `bufs` is now undefined, see the Notes section.
1892    ///
1893    /// assert_eq!(writer, &[1, 2, 3, 4, 5, 6]);
1894    /// # Ok(()) }
1895    /// ```
1896    #[unstable(feature = "write_all_vectored", issue = "70436")]
1897    fn write_all_vectored(&mut self, mut bufs: &mut [IoSlice<'_>]) -> Result<()> {
1898        // Guarantee that bufs is empty if it contains no data,
1899        // to avoid calling write_vectored if there is no data to be written.
1900        IoSlice::advance_slices(&mut bufs, 0);
1901        while !bufs.is_empty() {
1902            match self.write_vectored(bufs) {
1903                Ok(0) => {
1904                    return Err(Error::WRITE_ALL_EOF);
1905                }
1906                Ok(n) => IoSlice::advance_slices(&mut bufs, n),
1907                Err(ref e) if e.is_interrupted() => {}
1908                Err(e) => return Err(e),
1909            }
1910        }
1911        Ok(())
1912    }
1913
1914    /// Writes a formatted string into this writer, returning any error
1915    /// encountered.
1916    ///
1917    /// This method is primarily used to interface with the
1918    /// [`format_args!()`] macro, and it is rare that this should
1919    /// explicitly be called. The [`write!()`] macro should be favored to
1920    /// invoke this method instead.
1921    ///
1922    /// This function internally uses the [`write_all`] method on
1923    /// this trait and hence will continuously write data so long as no errors
1924    /// are received. This also means that partial writes are not indicated in
1925    /// this signature.
1926    ///
1927    /// [`write_all`]: Write::write_all
1928    ///
1929    /// # Errors
1930    ///
1931    /// This function will return any I/O error reported while formatting.
1932    ///
1933    /// # Examples
1934    ///
1935    /// ```no_run
1936    /// use std::io::prelude::*;
1937    /// use std::fs::File;
1938    ///
1939    /// fn main() -> std::io::Result<()> {
1940    ///     let mut buffer = File::create("foo.txt")?;
1941    ///
1942    ///     // this call
1943    ///     write!(buffer, "{:.*}", 2, 1.234567)?;
1944    ///     // turns into this:
1945    ///     buffer.write_fmt(format_args!("{:.*}", 2, 1.234567))?;
1946    ///     Ok(())
1947    /// }
1948    /// ```
1949    #[stable(feature = "rust1", since = "1.0.0")]
1950    fn write_fmt(&mut self, args: fmt::Arguments<'_>) -> Result<()> {
1951        if let Some(s) = args.as_statically_known_str() {
1952            self.write_all(s.as_bytes())
1953        } else {
1954            default_write_fmt(self, args)
1955        }
1956    }
1957
1958    /// Creates a "by reference" adapter for this instance of `Write`.
1959    ///
1960    /// The returned adapter also implements `Write` and will simply borrow this
1961    /// current writer.
1962    ///
1963    /// # Examples
1964    ///
1965    /// ```no_run
1966    /// use std::io::Write;
1967    /// use std::fs::File;
1968    ///
1969    /// fn main() -> std::io::Result<()> {
1970    ///     let mut buffer = File::create("foo.txt")?;
1971    ///
1972    ///     let reference = buffer.by_ref();
1973    ///
1974    ///     // we can use reference just like our original buffer
1975    ///     reference.write_all(b"some bytes")?;
1976    ///     Ok(())
1977    /// }
1978    /// ```
1979    #[stable(feature = "rust1", since = "1.0.0")]
1980    fn by_ref(&mut self) -> &mut Self
1981    where
1982        Self: Sized,
1983    {
1984        self
1985    }
1986}
1987
1988/// The `Seek` trait provides a cursor which can be moved within a stream of
1989/// bytes.
1990///
1991/// The stream typically has a fixed size, allowing seeking relative to either
1992/// end or the current offset.
1993///
1994/// # Examples
1995///
1996/// [`File`]s implement `Seek`:
1997///
1998/// [`File`]: crate::fs::File
1999///
2000/// ```no_run
2001/// use std::io;
2002/// use std::io::prelude::*;
2003/// use std::fs::File;
2004/// use std::io::SeekFrom;
2005///
2006/// fn main() -> io::Result<()> {
2007///     let mut f = File::open("foo.txt")?;
2008///
2009///     // move the cursor 42 bytes from the start of the file
2010///     f.seek(SeekFrom::Start(42))?;
2011///     Ok(())
2012/// }
2013/// ```
2014#[stable(feature = "rust1", since = "1.0.0")]
2015#[cfg_attr(not(test), rustc_diagnostic_item = "IoSeek")]
2016pub trait Seek {
2017    /// Seek to an offset, in bytes, in a stream.
2018    ///
2019    /// A seek beyond the end of a stream is allowed, but behavior is defined
2020    /// by the implementation.
2021    ///
2022    /// If the seek operation completed successfully,
2023    /// this method returns the new position from the start of the stream.
2024    /// That position can be used later with [`SeekFrom::Start`].
2025    ///
2026    /// # Errors
2027    ///
2028    /// Seeking can fail, for example because it might involve flushing a buffer.
2029    ///
2030    /// Seeking to a negative offset is considered an error.
2031    #[stable(feature = "rust1", since = "1.0.0")]
2032    fn seek(&mut self, pos: SeekFrom) -> Result<u64>;
2033
2034    /// Rewind to the beginning of a stream.
2035    ///
2036    /// This is a convenience method, equivalent to `seek(SeekFrom::Start(0))`.
2037    ///
2038    /// # Errors
2039    ///
2040    /// Rewinding can fail, for example because it might involve flushing a buffer.
2041    ///
2042    /// # Example
2043    ///
2044    /// ```no_run
2045    /// use std::io::{Read, Seek, Write};
2046    /// use std::fs::OpenOptions;
2047    ///
2048    /// let mut f = OpenOptions::new()
2049    ///     .write(true)
2050    ///     .read(true)
2051    ///     .create(true)
2052    ///     .open("foo.txt")?;
2053    ///
2054    /// let hello = "Hello!\n";
2055    /// write!(f, "{hello}")?;
2056    /// f.rewind()?;
2057    ///
2058    /// let mut buf = String::new();
2059    /// f.read_to_string(&mut buf)?;
2060    /// assert_eq!(&buf, hello);
2061    /// # std::io::Result::Ok(())
2062    /// ```
2063    #[stable(feature = "seek_rewind", since = "1.55.0")]
2064    fn rewind(&mut self) -> Result<()> {
2065        self.seek(SeekFrom::Start(0))?;
2066        Ok(())
2067    }
2068
2069    /// Returns the length of this stream (in bytes).
2070    ///
2071    /// The default implementation uses up to three seek operations. If this
2072    /// method returns successfully, the seek position is unchanged (i.e. the
2073    /// position before calling this method is the same as afterwards).
2074    /// However, if this method returns an error, the seek position is
2075    /// unspecified.
2076    ///
2077    /// If you need to obtain the length of *many* streams and you don't care
2078    /// about the seek position afterwards, you can reduce the number of seek
2079    /// operations by simply calling `seek(SeekFrom::End(0))` and using its
2080    /// return value (it is also the stream length).
2081    ///
2082    /// Note that length of a stream can change over time (for example, when
2083    /// data is appended to a file). So calling this method multiple times does
2084    /// not necessarily return the same length each time.
2085    ///
2086    /// # Example
2087    ///
2088    /// ```no_run
2089    /// #![feature(seek_stream_len)]
2090    /// use std::{
2091    ///     io::{self, Seek},
2092    ///     fs::File,
2093    /// };
2094    ///
2095    /// fn main() -> io::Result<()> {
2096    ///     let mut f = File::open("foo.txt")?;
2097    ///
2098    ///     let len = f.stream_len()?;
2099    ///     println!("The file is currently {len} bytes long");
2100    ///     Ok(())
2101    /// }
2102    /// ```
2103    #[unstable(feature = "seek_stream_len", issue = "59359")]
2104    fn stream_len(&mut self) -> Result<u64> {
2105        stream_len_default(self)
2106    }
2107
2108    /// Returns the current seek position from the start of the stream.
2109    ///
2110    /// This is equivalent to `self.seek(SeekFrom::Current(0))`.
2111    ///
2112    /// # Example
2113    ///
2114    /// ```no_run
2115    /// use std::{
2116    ///     io::{self, BufRead, BufReader, Seek},
2117    ///     fs::File,
2118    /// };
2119    ///
2120    /// fn main() -> io::Result<()> {
2121    ///     let mut f = BufReader::new(File::open("foo.txt")?);
2122    ///
2123    ///     let before = f.stream_position()?;
2124    ///     f.read_line(&mut String::new())?;
2125    ///     let after = f.stream_position()?;
2126    ///
2127    ///     println!("The first line was {} bytes long", after - before);
2128    ///     Ok(())
2129    /// }
2130    /// ```
2131    #[stable(feature = "seek_convenience", since = "1.51.0")]
2132    fn stream_position(&mut self) -> Result<u64> {
2133        self.seek(SeekFrom::Current(0))
2134    }
2135
2136    /// Seeks relative to the current position.
2137    ///
2138    /// This is equivalent to `self.seek(SeekFrom::Current(offset))` but
2139    /// doesn't return the new position which can allow some implementations
2140    /// such as [`BufReader`] to perform more efficient seeks.
2141    ///
2142    /// # Example
2143    ///
2144    /// ```no_run
2145    /// use std::{
2146    ///     io::{self, Seek},
2147    ///     fs::File,
2148    /// };
2149    ///
2150    /// fn main() -> io::Result<()> {
2151    ///     let mut f = File::open("foo.txt")?;
2152    ///     f.seek_relative(10)?;
2153    ///     assert_eq!(f.stream_position()?, 10);
2154    ///     Ok(())
2155    /// }
2156    /// ```
2157    ///
2158    /// [`BufReader`]: crate::io::BufReader
2159    #[stable(feature = "seek_seek_relative", since = "1.80.0")]
2160    fn seek_relative(&mut self, offset: i64) -> Result<()> {
2161        self.seek(SeekFrom::Current(offset))?;
2162        Ok(())
2163    }
2164}
2165
2166pub(crate) fn stream_len_default<T: Seek + ?Sized>(self_: &mut T) -> Result<u64> {
2167    let old_pos = self_.stream_position()?;
2168    let len = self_.seek(SeekFrom::End(0))?;
2169
2170    // Avoid seeking a third time when we were already at the end of the
2171    // stream. The branch is usually way cheaper than a seek operation.
2172    if old_pos != len {
2173        self_.seek(SeekFrom::Start(old_pos))?;
2174    }
2175
2176    Ok(len)
2177}
2178
2179/// Enumeration of possible methods to seek within an I/O object.
2180///
2181/// It is used by the [`Seek`] trait.
2182#[derive(Copy, PartialEq, Eq, Clone, Debug)]
2183#[stable(feature = "rust1", since = "1.0.0")]
2184#[cfg_attr(not(test), rustc_diagnostic_item = "SeekFrom")]
2185pub enum SeekFrom {
2186    /// Sets the offset to the provided number of bytes.
2187    #[stable(feature = "rust1", since = "1.0.0")]
2188    Start(#[stable(feature = "rust1", since = "1.0.0")] u64),
2189
2190    /// Sets the offset to the size of this object plus the specified number of
2191    /// bytes.
2192    ///
2193    /// It is possible to seek beyond the end of an object, but it's an error to
2194    /// seek before byte 0.
2195    #[stable(feature = "rust1", since = "1.0.0")]
2196    End(#[stable(feature = "rust1", since = "1.0.0")] i64),
2197
2198    /// Sets the offset to the current position plus the specified number of
2199    /// bytes.
2200    ///
2201    /// It is possible to seek beyond the end of an object, but it's an error to
2202    /// seek before byte 0.
2203    #[stable(feature = "rust1", since = "1.0.0")]
2204    Current(#[stable(feature = "rust1", since = "1.0.0")] i64),
2205}
2206
2207fn read_until<R: BufRead + ?Sized>(r: &mut R, delim: u8, buf: &mut Vec<u8>) -> Result<usize> {
2208    let mut read = 0;
2209    loop {
2210        let (done, used) = {
2211            let available = match r.fill_buf() {
2212                Ok(n) => n,
2213                Err(ref e) if e.is_interrupted() => continue,
2214                Err(e) => return Err(e),
2215            };
2216            match memchr::memchr(delim, available) {
2217                Some(i) => {
2218                    buf.extend_from_slice(&available[..=i]);
2219                    (true, i + 1)
2220                }
2221                None => {
2222                    buf.extend_from_slice(available);
2223                    (false, available.len())
2224                }
2225            }
2226        };
2227        r.consume(used);
2228        read += used;
2229        if done || used == 0 {
2230            return Ok(read);
2231        }
2232    }
2233}
2234
2235fn skip_until<R: BufRead + ?Sized>(r: &mut R, delim: u8) -> Result<usize> {
2236    let mut read = 0;
2237    loop {
2238        let (done, used) = {
2239            let available = match r.fill_buf() {
2240                Ok(n) => n,
2241                Err(ref e) if e.kind() == ErrorKind::Interrupted => continue,
2242                Err(e) => return Err(e),
2243            };
2244            match memchr::memchr(delim, available) {
2245                Some(i) => (true, i + 1),
2246                None => (false, available.len()),
2247            }
2248        };
2249        r.consume(used);
2250        read += used;
2251        if done || used == 0 {
2252            return Ok(read);
2253        }
2254    }
2255}
2256
2257/// A `BufRead` is a type of `Read`er which has an internal buffer, allowing it
2258/// to perform extra ways of reading.
2259///
2260/// For example, reading line-by-line is inefficient without using a buffer, so
2261/// if you want to read by line, you'll need `BufRead`, which includes a
2262/// [`read_line`] method as well as a [`lines`] iterator.
2263///
2264/// # Examples
2265///
2266/// A locked standard input implements `BufRead`:
2267///
2268/// ```no_run
2269/// use std::io;
2270/// use std::io::prelude::*;
2271///
2272/// let stdin = io::stdin();
2273/// for line in stdin.lock().lines() {
2274///     println!("{}", line?);
2275/// }
2276/// # std::io::Result::Ok(())
2277/// ```
2278///
2279/// If you have something that implements [`Read`], you can use the [`BufReader`
2280/// type][`BufReader`] to turn it into a `BufRead`.
2281///
2282/// For example, [`File`] implements [`Read`], but not `BufRead`.
2283/// [`BufReader`] to the rescue!
2284///
2285/// [`File`]: crate::fs::File
2286/// [`read_line`]: BufRead::read_line
2287/// [`lines`]: BufRead::lines
2288///
2289/// ```no_run
2290/// use std::io::{self, BufReader};
2291/// use std::io::prelude::*;
2292/// use std::fs::File;
2293///
2294/// fn main() -> io::Result<()> {
2295///     let f = File::open("foo.txt")?;
2296///     let f = BufReader::new(f);
2297///
2298///     for line in f.lines() {
2299///         let line = line?;
2300///         println!("{line}");
2301///     }
2302///
2303///     Ok(())
2304/// }
2305/// ```
2306#[stable(feature = "rust1", since = "1.0.0")]
2307#[cfg_attr(not(test), rustc_diagnostic_item = "IoBufRead")]
2308pub trait BufRead: Read {
2309    /// Returns the contents of the internal buffer, filling it with more data, via `Read` methods, if empty.
2310    ///
2311    /// This is a lower-level method and is meant to be used together with [`consume`],
2312    /// which can be used to mark bytes that should not be returned by subsequent calls to `read`.
2313    ///
2314    /// [`consume`]: BufRead::consume
2315    ///
2316    /// Returns an empty buffer when the stream has reached EOF.
2317    ///
2318    /// # Errors
2319    ///
2320    /// This function will return an I/O error if a `Read` method was called, but returned an error.
2321    ///
2322    /// # Examples
2323    ///
2324    /// A locked standard input implements `BufRead`:
2325    ///
2326    /// ```no_run
2327    /// use std::io;
2328    /// use std::io::prelude::*;
2329    ///
2330    /// let stdin = io::stdin();
2331    /// let mut stdin = stdin.lock();
2332    ///
2333    /// let buffer = stdin.fill_buf()?;
2334    ///
2335    /// // work with buffer
2336    /// println!("{buffer:?}");
2337    ///
2338    /// // mark the bytes we worked with as read
2339    /// let length = buffer.len();
2340    /// stdin.consume(length);
2341    /// # std::io::Result::Ok(())
2342    /// ```
2343    #[stable(feature = "rust1", since = "1.0.0")]
2344    fn fill_buf(&mut self) -> Result<&[u8]>;
2345
2346    /// Marks the given `amount` of additional bytes from the internal buffer as having been read.
2347    /// Subsequent calls to `read` only return bytes that have not been marked as read.
2348    ///
2349    /// This is a lower-level method and is meant to be used together with [`fill_buf`],
2350    /// which can be used to fill the internal buffer via `Read` methods.
2351    ///
2352    /// It is a logic error if `amount` exceeds the number of unread bytes in the internal buffer, which is returned by [`fill_buf`].
2353    ///
2354    /// # Examples
2355    ///
2356    /// Since `consume()` is meant to be used with [`fill_buf`],
2357    /// that method's example includes an example of `consume()`.
2358    ///
2359    /// [`fill_buf`]: BufRead::fill_buf
2360    #[stable(feature = "rust1", since = "1.0.0")]
2361    fn consume(&mut self, amount: usize);
2362
2363    /// Checks if there is any data left to be `read`.
2364    ///
2365    /// This function may fill the buffer to check for data,
2366    /// so this function returns `Result<bool>`, not `bool`.
2367    ///
2368    /// The default implementation calls `fill_buf` and checks that the
2369    /// returned slice is empty (which means that there is no data left,
2370    /// since EOF is reached).
2371    ///
2372    /// # Errors
2373    ///
2374    /// This function will return an I/O error if a `Read` method was called, but returned an error.
2375    ///
2376    /// Examples
2377    ///
2378    /// ```
2379    /// #![feature(buf_read_has_data_left)]
2380    /// use std::io;
2381    /// use std::io::prelude::*;
2382    ///
2383    /// let stdin = io::stdin();
2384    /// let mut stdin = stdin.lock();
2385    ///
2386    /// while stdin.has_data_left()? {
2387    ///     let mut line = String::new();
2388    ///     stdin.read_line(&mut line)?;
2389    ///     // work with line
2390    ///     println!("{line:?}");
2391    /// }
2392    /// # std::io::Result::Ok(())
2393    /// ```
2394    #[unstable(feature = "buf_read_has_data_left", reason = "recently added", issue = "86423")]
2395    fn has_data_left(&mut self) -> Result<bool> {
2396        self.fill_buf().map(|b| !b.is_empty())
2397    }
2398
2399    /// Reads all bytes into `buf` until the delimiter `byte` or EOF is reached.
2400    ///
2401    /// This function will read bytes from the underlying stream until the
2402    /// delimiter or EOF is found. Once found, all bytes up to, and including,
2403    /// the delimiter (if found) will be appended to `buf`.
2404    ///
2405    /// If successful, this function will return the total number of bytes read.
2406    ///
2407    /// This function is blocking and should be used carefully: it is possible for
2408    /// an attacker to continuously send bytes without ever sending the delimiter
2409    /// or EOF.
2410    ///
2411    /// # Errors
2412    ///
2413    /// This function will ignore all instances of [`ErrorKind::Interrupted`] and
2414    /// will otherwise return any errors returned by [`fill_buf`].
2415    ///
2416    /// If an I/O error is encountered then all bytes read so far will be
2417    /// present in `buf` and its length will have been adjusted appropriately.
2418    ///
2419    /// [`fill_buf`]: BufRead::fill_buf
2420    ///
2421    /// # Examples
2422    ///
2423    /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
2424    /// this example, we use [`Cursor`] to read all the bytes in a byte slice
2425    /// in hyphen delimited segments:
2426    ///
2427    /// ```
2428    /// use std::io::{self, BufRead};
2429    ///
2430    /// let mut cursor = io::Cursor::new(b"lorem-ipsum");
2431    /// let mut buf = vec![];
2432    ///
2433    /// // cursor is at 'l'
2434    /// let num_bytes = cursor.read_until(b'-', &mut buf)
2435    ///     .expect("reading from cursor won't fail");
2436    /// assert_eq!(num_bytes, 6);
2437    /// assert_eq!(buf, b"lorem-");
2438    /// buf.clear();
2439    ///
2440    /// // cursor is at 'i'
2441    /// let num_bytes = cursor.read_until(b'-', &mut buf)
2442    ///     .expect("reading from cursor won't fail");
2443    /// assert_eq!(num_bytes, 5);
2444    /// assert_eq!(buf, b"ipsum");
2445    /// buf.clear();
2446    ///
2447    /// // cursor is at EOF
2448    /// let num_bytes = cursor.read_until(b'-', &mut buf)
2449    ///     .expect("reading from cursor won't fail");
2450    /// assert_eq!(num_bytes, 0);
2451    /// assert_eq!(buf, b"");
2452    /// ```
2453    #[stable(feature = "rust1", since = "1.0.0")]
2454    fn read_until(&mut self, byte: u8, buf: &mut Vec<u8>) -> Result<usize> {
2455        read_until(self, byte, buf)
2456    }
2457
2458    /// Skips all bytes until the delimiter `byte` or EOF is reached.
2459    ///
2460    /// This function will read (and discard) bytes from the underlying stream until the
2461    /// delimiter or EOF is found.
2462    ///
2463    /// If successful, this function will return the total number of bytes read,
2464    /// including the delimiter byte.
2465    ///
2466    /// This is useful for efficiently skipping data such as NUL-terminated strings
2467    /// in binary file formats without buffering.
2468    ///
2469    /// This function is blocking and should be used carefully: it is possible for
2470    /// an attacker to continuously send bytes without ever sending the delimiter
2471    /// or EOF.
2472    ///
2473    /// # Errors
2474    ///
2475    /// This function will ignore all instances of [`ErrorKind::Interrupted`] and
2476    /// will otherwise return any errors returned by [`fill_buf`].
2477    ///
2478    /// If an I/O error is encountered then all bytes read so far will be
2479    /// present in `buf` and its length will have been adjusted appropriately.
2480    ///
2481    /// [`fill_buf`]: BufRead::fill_buf
2482    ///
2483    /// # Examples
2484    ///
2485    /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
2486    /// this example, we use [`Cursor`] to read some NUL-terminated information
2487    /// about Ferris from a binary string, skipping the fun fact:
2488    ///
2489    /// ```
2490    /// use std::io::{self, BufRead};
2491    ///
2492    /// let mut cursor = io::Cursor::new(b"Ferris\0Likes long walks on the beach\0Crustacean\0");
2493    ///
2494    /// // read name
2495    /// let mut name = Vec::new();
2496    /// let num_bytes = cursor.read_until(b'\0', &mut name)
2497    ///     .expect("reading from cursor won't fail");
2498    /// assert_eq!(num_bytes, 7);
2499    /// assert_eq!(name, b"Ferris\0");
2500    ///
2501    /// // skip fun fact
2502    /// let num_bytes = cursor.skip_until(b'\0')
2503    ///     .expect("reading from cursor won't fail");
2504    /// assert_eq!(num_bytes, 30);
2505    ///
2506    /// // read animal type
2507    /// let mut animal = Vec::new();
2508    /// let num_bytes = cursor.read_until(b'\0', &mut animal)
2509    ///     .expect("reading from cursor won't fail");
2510    /// assert_eq!(num_bytes, 11);
2511    /// assert_eq!(animal, b"Crustacean\0");
2512    /// ```
2513    #[stable(feature = "bufread_skip_until", since = "1.83.0")]
2514    fn skip_until(&mut self, byte: u8) -> Result<usize> {
2515        skip_until(self, byte)
2516    }
2517
2518    /// Reads all bytes until a newline (the `0xA` byte) is reached, and append
2519    /// them to the provided `String` buffer.
2520    ///
2521    /// Previous content of the buffer will be preserved. To avoid appending to
2522    /// the buffer, you need to [`clear`] it first.
2523    ///
2524    /// This function will read bytes from the underlying stream until the
2525    /// newline delimiter (the `0xA` byte) or EOF is found. Once found, all bytes
2526    /// up to, and including, the delimiter (if found) will be appended to
2527    /// `buf`.
2528    ///
2529    /// If successful, this function will return the total number of bytes read.
2530    ///
2531    /// If this function returns [`Ok(0)`], the stream has reached EOF.
2532    ///
2533    /// This function is blocking and should be used carefully: it is possible for
2534    /// an attacker to continuously send bytes without ever sending a newline
2535    /// or EOF. You can use [`take`] to limit the maximum number of bytes read.
2536    ///
2537    /// [`Ok(0)`]: Ok
2538    /// [`clear`]: String::clear
2539    /// [`take`]: crate::io::Read::take
2540    ///
2541    /// # Errors
2542    ///
2543    /// This function has the same error semantics as [`read_until`] and will
2544    /// also return an error if the read bytes are not valid UTF-8. If an I/O
2545    /// error is encountered then `buf` may contain some bytes already read in
2546    /// the event that all data read so far was valid UTF-8.
2547    ///
2548    /// [`read_until`]: BufRead::read_until
2549    ///
2550    /// # Examples
2551    ///
2552    /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
2553    /// this example, we use [`Cursor`] to read all the lines in a byte slice:
2554    ///
2555    /// ```
2556    /// use std::io::{self, BufRead};
2557    ///
2558    /// let mut cursor = io::Cursor::new(b"foo\nbar");
2559    /// let mut buf = String::new();
2560    ///
2561    /// // cursor is at 'f'
2562    /// let num_bytes = cursor.read_line(&mut buf)
2563    ///     .expect("reading from cursor won't fail");
2564    /// assert_eq!(num_bytes, 4);
2565    /// assert_eq!(buf, "foo\n");
2566    /// buf.clear();
2567    ///
2568    /// // cursor is at 'b'
2569    /// let num_bytes = cursor.read_line(&mut buf)
2570    ///     .expect("reading from cursor won't fail");
2571    /// assert_eq!(num_bytes, 3);
2572    /// assert_eq!(buf, "bar");
2573    /// buf.clear();
2574    ///
2575    /// // cursor is at EOF
2576    /// let num_bytes = cursor.read_line(&mut buf)
2577    ///     .expect("reading from cursor won't fail");
2578    /// assert_eq!(num_bytes, 0);
2579    /// assert_eq!(buf, "");
2580    /// ```
2581    #[stable(feature = "rust1", since = "1.0.0")]
2582    fn read_line(&mut self, buf: &mut String) -> Result<usize> {
2583        // Note that we are not calling the `.read_until` method here, but
2584        // rather our hardcoded implementation. For more details as to why, see
2585        // the comments in `default_read_to_string`.
2586        unsafe { append_to_string(buf, |b| read_until(self, b'\n', b)) }
2587    }
2588
2589    /// Returns an iterator over the contents of this reader split on the byte
2590    /// `byte`.
2591    ///
2592    /// The iterator returned from this function will return instances of
2593    /// <code>[io::Result]<[Vec]\<u8>></code>. Each vector returned will *not* have
2594    /// the delimiter byte at the end.
2595    ///
2596    /// This function will yield errors whenever [`read_until`] would have
2597    /// also yielded an error.
2598    ///
2599    /// [io::Result]: self::Result "io::Result"
2600    /// [`read_until`]: BufRead::read_until
2601    ///
2602    /// # Examples
2603    ///
2604    /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
2605    /// this example, we use [`Cursor`] to iterate over all hyphen delimited
2606    /// segments in a byte slice
2607    ///
2608    /// ```
2609    /// use std::io::{self, BufRead};
2610    ///
2611    /// let cursor = io::Cursor::new(b"lorem-ipsum-dolor");
2612    ///
2613    /// let mut split_iter = cursor.split(b'-').map(|l| l.unwrap());
2614    /// assert_eq!(split_iter.next(), Some(b"lorem".to_vec()));
2615    /// assert_eq!(split_iter.next(), Some(b"ipsum".to_vec()));
2616    /// assert_eq!(split_iter.next(), Some(b"dolor".to_vec()));
2617    /// assert_eq!(split_iter.next(), None);
2618    /// ```
2619    #[stable(feature = "rust1", since = "1.0.0")]
2620    fn split(self, byte: u8) -> Split<Self>
2621    where
2622        Self: Sized,
2623    {
2624        Split { buf: self, delim: byte }
2625    }
2626
2627    /// Returns an iterator over the lines of this reader.
2628    ///
2629    /// The iterator returned from this function will yield instances of
2630    /// <code>[io::Result]<[String]></code>. Each string returned will *not* have a newline
2631    /// byte (the `0xA` byte) or `CRLF` (`0xD`, `0xA` bytes) at the end.
2632    ///
2633    /// [io::Result]: self::Result "io::Result"
2634    ///
2635    /// # Examples
2636    ///
2637    /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
2638    /// this example, we use [`Cursor`] to iterate over all the lines in a byte
2639    /// slice.
2640    ///
2641    /// ```
2642    /// use std::io::{self, BufRead};
2643    ///
2644    /// let cursor = io::Cursor::new(b"lorem\nipsum\r\ndolor");
2645    ///
2646    /// let mut lines_iter = cursor.lines().map(|l| l.unwrap());
2647    /// assert_eq!(lines_iter.next(), Some(String::from("lorem")));
2648    /// assert_eq!(lines_iter.next(), Some(String::from("ipsum")));
2649    /// assert_eq!(lines_iter.next(), Some(String::from("dolor")));
2650    /// assert_eq!(lines_iter.next(), None);
2651    /// ```
2652    ///
2653    /// # Errors
2654    ///
2655    /// Each line of the iterator has the same error semantics as [`BufRead::read_line`].
2656    #[stable(feature = "rust1", since = "1.0.0")]
2657    fn lines(self) -> Lines<Self>
2658    where
2659        Self: Sized,
2660    {
2661        Lines { buf: self }
2662    }
2663}
2664
2665/// Adapter to chain together two readers.
2666///
2667/// This struct is generally created by calling [`chain`] on a reader.
2668/// Please see the documentation of [`chain`] for more details.
2669///
2670/// [`chain`]: Read::chain
2671#[stable(feature = "rust1", since = "1.0.0")]
2672#[derive(Debug)]
2673pub struct Chain<T, U> {
2674    first: T,
2675    second: U,
2676    done_first: bool,
2677}
2678
2679impl<T, U> Chain<T, U> {
2680    /// Consumes the `Chain`, returning the wrapped readers.
2681    ///
2682    /// # Examples
2683    ///
2684    /// ```no_run
2685    /// use std::io;
2686    /// use std::io::prelude::*;
2687    /// use std::fs::File;
2688    ///
2689    /// fn main() -> io::Result<()> {
2690    ///     let mut foo_file = File::open("foo.txt")?;
2691    ///     let mut bar_file = File::open("bar.txt")?;
2692    ///
2693    ///     let chain = foo_file.chain(bar_file);
2694    ///     let (foo_file, bar_file) = chain.into_inner();
2695    ///     Ok(())
2696    /// }
2697    /// ```
2698    #[stable(feature = "more_io_inner_methods", since = "1.20.0")]
2699    pub fn into_inner(self) -> (T, U) {
2700        (self.first, self.second)
2701    }
2702
2703    /// Gets references to the underlying readers in this `Chain`.
2704    ///
2705    /// Care should be taken to avoid modifying the internal I/O state of the
2706    /// underlying readers as doing so may corrupt the internal state of this
2707    /// `Chain`.
2708    ///
2709    /// # Examples
2710    ///
2711    /// ```no_run
2712    /// use std::io;
2713    /// use std::io::prelude::*;
2714    /// use std::fs::File;
2715    ///
2716    /// fn main() -> io::Result<()> {
2717    ///     let mut foo_file = File::open("foo.txt")?;
2718    ///     let mut bar_file = File::open("bar.txt")?;
2719    ///
2720    ///     let chain = foo_file.chain(bar_file);
2721    ///     let (foo_file, bar_file) = chain.get_ref();
2722    ///     Ok(())
2723    /// }
2724    /// ```
2725    #[stable(feature = "more_io_inner_methods", since = "1.20.0")]
2726    pub fn get_ref(&self) -> (&T, &U) {
2727        (&self.first, &self.second)
2728    }
2729
2730    /// Gets mutable references to the underlying readers in this `Chain`.
2731    ///
2732    /// Care should be taken to avoid modifying the internal I/O state of the
2733    /// underlying readers as doing so may corrupt the internal state of this
2734    /// `Chain`.
2735    ///
2736    /// # Examples
2737    ///
2738    /// ```no_run
2739    /// use std::io;
2740    /// use std::io::prelude::*;
2741    /// use std::fs::File;
2742    ///
2743    /// fn main() -> io::Result<()> {
2744    ///     let mut foo_file = File::open("foo.txt")?;
2745    ///     let mut bar_file = File::open("bar.txt")?;
2746    ///
2747    ///     let mut chain = foo_file.chain(bar_file);
2748    ///     let (foo_file, bar_file) = chain.get_mut();
2749    ///     Ok(())
2750    /// }
2751    /// ```
2752    #[stable(feature = "more_io_inner_methods", since = "1.20.0")]
2753    pub fn get_mut(&mut self) -> (&mut T, &mut U) {
2754        (&mut self.first, &mut self.second)
2755    }
2756}
2757
2758#[stable(feature = "rust1", since = "1.0.0")]
2759impl<T: Read, U: Read> Read for Chain<T, U> {
2760    fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
2761        if !self.done_first {
2762            match self.first.read(buf)? {
2763                0 if !buf.is_empty() => self.done_first = true,
2764                n => return Ok(n),
2765            }
2766        }
2767        self.second.read(buf)
2768    }
2769
2770    fn read_vectored(&mut self, bufs: &mut [IoSliceMut<'_>]) -> Result<usize> {
2771        if !self.done_first {
2772            match self.first.read_vectored(bufs)? {
2773                0 if bufs.iter().any(|b| !b.is_empty()) => self.done_first = true,
2774                n => return Ok(n),
2775            }
2776        }
2777        self.second.read_vectored(bufs)
2778    }
2779
2780    #[inline]
2781    fn is_read_vectored(&self) -> bool {
2782        self.first.is_read_vectored() || self.second.is_read_vectored()
2783    }
2784
2785    fn read_to_end(&mut self, buf: &mut Vec<u8>) -> Result<usize> {
2786        let mut read = 0;
2787        if !self.done_first {
2788            read += self.first.read_to_end(buf)?;
2789            self.done_first = true;
2790        }
2791        read += self.second.read_to_end(buf)?;
2792        Ok(read)
2793    }
2794
2795    // We don't override `read_to_string` here because an UTF-8 sequence could
2796    // be split between the two parts of the chain
2797
2798    fn read_buf(&mut self, mut buf: BorrowedCursor<'_>) -> Result<()> {
2799        if buf.capacity() == 0 {
2800            return Ok(());
2801        }
2802
2803        if !self.done_first {
2804            let old_len = buf.written();
2805            self.first.read_buf(buf.reborrow())?;
2806
2807            if buf.written() != old_len {
2808                return Ok(());
2809            } else {
2810                self.done_first = true;
2811            }
2812        }
2813        self.second.read_buf(buf)
2814    }
2815}
2816
2817#[stable(feature = "chain_bufread", since = "1.9.0")]
2818impl<T: BufRead, U: BufRead> BufRead for Chain<T, U> {
2819    fn fill_buf(&mut self) -> Result<&[u8]> {
2820        if !self.done_first {
2821            match self.first.fill_buf()? {
2822                buf if buf.is_empty() => self.done_first = true,
2823                buf => return Ok(buf),
2824            }
2825        }
2826        self.second.fill_buf()
2827    }
2828
2829    fn consume(&mut self, amt: usize) {
2830        if !self.done_first { self.first.consume(amt) } else { self.second.consume(amt) }
2831    }
2832
2833    fn read_until(&mut self, byte: u8, buf: &mut Vec<u8>) -> Result<usize> {
2834        let mut read = 0;
2835        if !self.done_first {
2836            let n = self.first.read_until(byte, buf)?;
2837            read += n;
2838
2839            match buf.last() {
2840                Some(b) if *b == byte && n != 0 => return Ok(read),
2841                _ => self.done_first = true,
2842            }
2843        }
2844        read += self.second.read_until(byte, buf)?;
2845        Ok(read)
2846    }
2847
2848    // We don't override `read_line` here because an UTF-8 sequence could be
2849    // split between the two parts of the chain
2850}
2851
2852impl<T, U> SizeHint for Chain<T, U> {
2853    #[inline]
2854    fn lower_bound(&self) -> usize {
2855        SizeHint::lower_bound(&self.first) + SizeHint::lower_bound(&self.second)
2856    }
2857
2858    #[inline]
2859    fn upper_bound(&self) -> Option<usize> {
2860        match (SizeHint::upper_bound(&self.first), SizeHint::upper_bound(&self.second)) {
2861            (Some(first), Some(second)) => first.checked_add(second),
2862            _ => None,
2863        }
2864    }
2865}
2866
2867/// Reader adapter which limits the bytes read from an underlying reader.
2868///
2869/// This struct is generally created by calling [`take`] on a reader.
2870/// Please see the documentation of [`take`] for more details.
2871///
2872/// [`take`]: Read::take
2873#[stable(feature = "rust1", since = "1.0.0")]
2874#[derive(Debug)]
2875pub struct Take<T> {
2876    inner: T,
2877    len: u64,
2878    limit: u64,
2879}
2880
2881impl<T> Take<T> {
2882    /// Returns the number of bytes that can be read before this instance will
2883    /// return EOF.
2884    ///
2885    /// # Note
2886    ///
2887    /// This instance may reach `EOF` after reading fewer bytes than indicated by
2888    /// this method if the underlying [`Read`] instance reaches EOF.
2889    ///
2890    /// # Examples
2891    ///
2892    /// ```no_run
2893    /// use std::io;
2894    /// use std::io::prelude::*;
2895    /// use std::fs::File;
2896    ///
2897    /// fn main() -> io::Result<()> {
2898    ///     let f = File::open("foo.txt")?;
2899    ///
2900    ///     // read at most five bytes
2901    ///     let handle = f.take(5);
2902    ///
2903    ///     println!("limit: {}", handle.limit());
2904    ///     Ok(())
2905    /// }
2906    /// ```
2907    #[stable(feature = "rust1", since = "1.0.0")]
2908    pub fn limit(&self) -> u64 {
2909        self.limit
2910    }
2911
2912    /// Returns the number of bytes read so far.
2913    #[unstable(feature = "seek_io_take_position", issue = "97227")]
2914    pub fn position(&self) -> u64 {
2915        self.len - self.limit
2916    }
2917
2918    /// Sets the number of bytes that can be read before this instance will
2919    /// return EOF. This is the same as constructing a new `Take` instance, so
2920    /// the amount of bytes read and the previous limit value don't matter when
2921    /// calling this method.
2922    ///
2923    /// # Examples
2924    ///
2925    /// ```no_run
2926    /// use std::io;
2927    /// use std::io::prelude::*;
2928    /// use std::fs::File;
2929    ///
2930    /// fn main() -> io::Result<()> {
2931    ///     let f = File::open("foo.txt")?;
2932    ///
2933    ///     // read at most five bytes
2934    ///     let mut handle = f.take(5);
2935    ///     handle.set_limit(10);
2936    ///
2937    ///     assert_eq!(handle.limit(), 10);
2938    ///     Ok(())
2939    /// }
2940    /// ```
2941    #[stable(feature = "take_set_limit", since = "1.27.0")]
2942    pub fn set_limit(&mut self, limit: u64) {
2943        self.len = limit;
2944        self.limit = limit;
2945    }
2946
2947    /// Consumes the `Take`, returning the wrapped reader.
2948    ///
2949    /// # Examples
2950    ///
2951    /// ```no_run
2952    /// use std::io;
2953    /// use std::io::prelude::*;
2954    /// use std::fs::File;
2955    ///
2956    /// fn main() -> io::Result<()> {
2957    ///     let mut file = File::open("foo.txt")?;
2958    ///
2959    ///     let mut buffer = [0; 5];
2960    ///     let mut handle = file.take(5);
2961    ///     handle.read(&mut buffer)?;
2962    ///
2963    ///     let file = handle.into_inner();
2964    ///     Ok(())
2965    /// }
2966    /// ```
2967    #[stable(feature = "io_take_into_inner", since = "1.15.0")]
2968    pub fn into_inner(self) -> T {
2969        self.inner
2970    }
2971
2972    /// Gets a reference to the underlying reader.
2973    ///
2974    /// Care should be taken to avoid modifying the internal I/O state of the
2975    /// underlying reader as doing so may corrupt the internal limit of this
2976    /// `Take`.
2977    ///
2978    /// # Examples
2979    ///
2980    /// ```no_run
2981    /// use std::io;
2982    /// use std::io::prelude::*;
2983    /// use std::fs::File;
2984    ///
2985    /// fn main() -> io::Result<()> {
2986    ///     let mut file = File::open("foo.txt")?;
2987    ///
2988    ///     let mut buffer = [0; 5];
2989    ///     let mut handle = file.take(5);
2990    ///     handle.read(&mut buffer)?;
2991    ///
2992    ///     let file = handle.get_ref();
2993    ///     Ok(())
2994    /// }
2995    /// ```
2996    #[stable(feature = "more_io_inner_methods", since = "1.20.0")]
2997    pub fn get_ref(&self) -> &T {
2998        &self.inner
2999    }
3000
3001    /// Gets a mutable reference to the underlying reader.
3002    ///
3003    /// Care should be taken to avoid modifying the internal I/O state of the
3004    /// underlying reader as doing so may corrupt the internal limit of this
3005    /// `Take`.
3006    ///
3007    /// # Examples
3008    ///
3009    /// ```no_run
3010    /// use std::io;
3011    /// use std::io::prelude::*;
3012    /// use std::fs::File;
3013    ///
3014    /// fn main() -> io::Result<()> {
3015    ///     let mut file = File::open("foo.txt")?;
3016    ///
3017    ///     let mut buffer = [0; 5];
3018    ///     let mut handle = file.take(5);
3019    ///     handle.read(&mut buffer)?;
3020    ///
3021    ///     let file = handle.get_mut();
3022    ///     Ok(())
3023    /// }
3024    /// ```
3025    #[stable(feature = "more_io_inner_methods", since = "1.20.0")]
3026    pub fn get_mut(&mut self) -> &mut T {
3027        &mut self.inner
3028    }
3029}
3030
3031#[stable(feature = "rust1", since = "1.0.0")]
3032impl<T: Read> Read for Take<T> {
3033    fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
3034        // Don't call into inner reader at all at EOF because it may still block
3035        if self.limit == 0 {
3036            return Ok(0);
3037        }
3038
3039        let max = cmp::min(buf.len() as u64, self.limit) as usize;
3040        let n = self.inner.read(&mut buf[..max])?;
3041        assert!(n as u64 <= self.limit, "number of read bytes exceeds limit");
3042        self.limit -= n as u64;
3043        Ok(n)
3044    }
3045
3046    fn read_buf(&mut self, mut buf: BorrowedCursor<'_>) -> Result<()> {
3047        // Don't call into inner reader at all at EOF because it may still block
3048        if self.limit == 0 {
3049            return Ok(());
3050        }
3051
3052        if self.limit < buf.capacity() as u64 {
3053            // The condition above guarantees that `self.limit` fits in `usize`.
3054            let limit = self.limit as usize;
3055
3056            let extra_init = cmp::min(limit, buf.init_ref().len());
3057
3058            // SAFETY: no uninit data is written to ibuf
3059            let ibuf = unsafe { &mut buf.as_mut()[..limit] };
3060
3061            let mut sliced_buf: BorrowedBuf<'_> = ibuf.into();
3062
3063            // SAFETY: extra_init bytes of ibuf are known to be initialized
3064            unsafe {
3065                sliced_buf.set_init(extra_init);
3066            }
3067
3068            let mut cursor = sliced_buf.unfilled();
3069            let result = self.inner.read_buf(cursor.reborrow());
3070
3071            let new_init = cursor.init_ref().len();
3072            let filled = sliced_buf.len();
3073
3074            // cursor / sliced_buf / ibuf must drop here
3075
3076            unsafe {
3077                // SAFETY: filled bytes have been filled and therefore initialized
3078                buf.advance_unchecked(filled);
3079                // SAFETY: new_init bytes of buf's unfilled buffer have been initialized
3080                buf.set_init(new_init);
3081            }
3082
3083            self.limit -= filled as u64;
3084
3085            result
3086        } else {
3087            let written = buf.written();
3088            let result = self.inner.read_buf(buf.reborrow());
3089            self.limit -= (buf.written() - written) as u64;
3090            result
3091        }
3092    }
3093}
3094
3095#[stable(feature = "rust1", since = "1.0.0")]
3096impl<T: BufRead> BufRead for Take<T> {
3097    fn fill_buf(&mut self) -> Result<&[u8]> {
3098        // Don't call into inner reader at all at EOF because it may still block
3099        if self.limit == 0 {
3100            return Ok(&[]);
3101        }
3102
3103        let buf = self.inner.fill_buf()?;
3104        let cap = cmp::min(buf.len() as u64, self.limit) as usize;
3105        Ok(&buf[..cap])
3106    }
3107
3108    fn consume(&mut self, amt: usize) {
3109        // Don't let callers reset the limit by passing an overlarge value
3110        let amt = cmp::min(amt as u64, self.limit) as usize;
3111        self.limit -= amt as u64;
3112        self.inner.consume(amt);
3113    }
3114}
3115
3116impl<T> SizeHint for Take<T> {
3117    #[inline]
3118    fn lower_bound(&self) -> usize {
3119        cmp::min(SizeHint::lower_bound(&self.inner) as u64, self.limit) as usize
3120    }
3121
3122    #[inline]
3123    fn upper_bound(&self) -> Option<usize> {
3124        match SizeHint::upper_bound(&self.inner) {
3125            Some(upper_bound) => Some(cmp::min(upper_bound as u64, self.limit) as usize),
3126            None => self.limit.try_into().ok(),
3127        }
3128    }
3129}
3130
3131#[stable(feature = "seek_io_take", since = "CURRENT_RUSTC_VERSION")]
3132impl<T: Seek> Seek for Take<T> {
3133    fn seek(&mut self, pos: SeekFrom) -> Result<u64> {
3134        let new_position = match pos {
3135            SeekFrom::Start(v) => Some(v),
3136            SeekFrom::Current(v) => self.position().checked_add_signed(v),
3137            SeekFrom::End(v) => self.len.checked_add_signed(v),
3138        };
3139        let new_position = match new_position {
3140            Some(v) if v <= self.len => v,
3141            _ => return Err(ErrorKind::InvalidInput.into()),
3142        };
3143        while new_position != self.position() {
3144            if let Some(offset) = new_position.checked_signed_diff(self.position()) {
3145                self.inner.seek_relative(offset)?;
3146                self.limit = self.limit.wrapping_sub(offset as u64);
3147                break;
3148            }
3149            let offset = if new_position > self.position() { i64::MAX } else { i64::MIN };
3150            self.inner.seek_relative(offset)?;
3151            self.limit = self.limit.wrapping_sub(offset as u64);
3152        }
3153        Ok(new_position)
3154    }
3155
3156    fn stream_len(&mut self) -> Result<u64> {
3157        Ok(self.len)
3158    }
3159
3160    fn stream_position(&mut self) -> Result<u64> {
3161        Ok(self.position())
3162    }
3163
3164    fn seek_relative(&mut self, offset: i64) -> Result<()> {
3165        if !self.position().checked_add_signed(offset).is_some_and(|p| p <= self.len) {
3166            return Err(ErrorKind::InvalidInput.into());
3167        }
3168        self.inner.seek_relative(offset)?;
3169        self.limit = self.limit.wrapping_sub(offset as u64);
3170        Ok(())
3171    }
3172}
3173
3174/// An iterator over `u8` values of a reader.
3175///
3176/// This struct is generally created by calling [`bytes`] on a reader.
3177/// Please see the documentation of [`bytes`] for more details.
3178///
3179/// [`bytes`]: Read::bytes
3180#[stable(feature = "rust1", since = "1.0.0")]
3181#[derive(Debug)]
3182pub struct Bytes<R> {
3183    inner: R,
3184}
3185
3186#[stable(feature = "rust1", since = "1.0.0")]
3187impl<R: Read> Iterator for Bytes<R> {
3188    type Item = Result<u8>;
3189
3190    // Not `#[inline]`. This function gets inlined even without it, but having
3191    // the inline annotation can result in worse code generation. See #116785.
3192    fn next(&mut self) -> Option<Result<u8>> {
3193        SpecReadByte::spec_read_byte(&mut self.inner)
3194    }
3195
3196    #[inline]
3197    fn size_hint(&self) -> (usize, Option<usize>) {
3198        SizeHint::size_hint(&self.inner)
3199    }
3200}
3201
3202/// For the specialization of `Bytes::next`.
3203trait SpecReadByte {
3204    fn spec_read_byte(&mut self) -> Option<Result<u8>>;
3205}
3206
3207impl<R> SpecReadByte for R
3208where
3209    Self: Read,
3210{
3211    #[inline]
3212    default fn spec_read_byte(&mut self) -> Option<Result<u8>> {
3213        inlined_slow_read_byte(self)
3214    }
3215}
3216
3217/// Reads a single byte in a slow, generic way. This is used by the default
3218/// `spec_read_byte`.
3219#[inline]
3220fn inlined_slow_read_byte<R: Read>(reader: &mut R) -> Option<Result<u8>> {
3221    let mut byte = 0;
3222    loop {
3223        return match reader.read(slice::from_mut(&mut byte)) {
3224            Ok(0) => None,
3225            Ok(..) => Some(Ok(byte)),
3226            Err(ref e) if e.is_interrupted() => continue,
3227            Err(e) => Some(Err(e)),
3228        };
3229    }
3230}
3231
3232// Used by `BufReader::spec_read_byte`, for which the `inline(ever)` is
3233// important.
3234#[inline(never)]
3235fn uninlined_slow_read_byte<R: Read>(reader: &mut R) -> Option<Result<u8>> {
3236    inlined_slow_read_byte(reader)
3237}
3238
3239trait SizeHint {
3240    fn lower_bound(&self) -> usize;
3241
3242    fn upper_bound(&self) -> Option<usize>;
3243
3244    fn size_hint(&self) -> (usize, Option<usize>) {
3245        (self.lower_bound(), self.upper_bound())
3246    }
3247}
3248
3249impl<T: ?Sized> SizeHint for T {
3250    #[inline]
3251    default fn lower_bound(&self) -> usize {
3252        0
3253    }
3254
3255    #[inline]
3256    default fn upper_bound(&self) -> Option<usize> {
3257        None
3258    }
3259}
3260
3261impl<T> SizeHint for &mut T {
3262    #[inline]
3263    fn lower_bound(&self) -> usize {
3264        SizeHint::lower_bound(*self)
3265    }
3266
3267    #[inline]
3268    fn upper_bound(&self) -> Option<usize> {
3269        SizeHint::upper_bound(*self)
3270    }
3271}
3272
3273impl<T> SizeHint for Box<T> {
3274    #[inline]
3275    fn lower_bound(&self) -> usize {
3276        SizeHint::lower_bound(&**self)
3277    }
3278
3279    #[inline]
3280    fn upper_bound(&self) -> Option<usize> {
3281        SizeHint::upper_bound(&**self)
3282    }
3283}
3284
3285impl SizeHint for &[u8] {
3286    #[inline]
3287    fn lower_bound(&self) -> usize {
3288        self.len()
3289    }
3290
3291    #[inline]
3292    fn upper_bound(&self) -> Option<usize> {
3293        Some(self.len())
3294    }
3295}
3296
3297/// An iterator over the contents of an instance of `BufRead` split on a
3298/// particular byte.
3299///
3300/// This struct is generally created by calling [`split`] on a `BufRead`.
3301/// Please see the documentation of [`split`] for more details.
3302///
3303/// [`split`]: BufRead::split
3304#[stable(feature = "rust1", since = "1.0.0")]
3305#[derive(Debug)]
3306pub struct Split<B> {
3307    buf: B,
3308    delim: u8,
3309}
3310
3311#[stable(feature = "rust1", since = "1.0.0")]
3312impl<B: BufRead> Iterator for Split<B> {
3313    type Item = Result<Vec<u8>>;
3314
3315    fn next(&mut self) -> Option<Result<Vec<u8>>> {
3316        let mut buf = Vec::new();
3317        match self.buf.read_until(self.delim, &mut buf) {
3318            Ok(0) => None,
3319            Ok(_n) => {
3320                if buf[buf.len() - 1] == self.delim {
3321                    buf.pop();
3322                }
3323                Some(Ok(buf))
3324            }
3325            Err(e) => Some(Err(e)),
3326        }
3327    }
3328}
3329
3330/// An iterator over the lines of an instance of `BufRead`.
3331///
3332/// This struct is generally created by calling [`lines`] on a `BufRead`.
3333/// Please see the documentation of [`lines`] for more details.
3334///
3335/// [`lines`]: BufRead::lines
3336#[stable(feature = "rust1", since = "1.0.0")]
3337#[derive(Debug)]
3338#[cfg_attr(not(test), rustc_diagnostic_item = "IoLines")]
3339pub struct Lines<B> {
3340    buf: B,
3341}
3342
3343#[stable(feature = "rust1", since = "1.0.0")]
3344impl<B: BufRead> Iterator for Lines<B> {
3345    type Item = Result<String>;
3346
3347    fn next(&mut self) -> Option<Result<String>> {
3348        let mut buf = String::new();
3349        match self.buf.read_line(&mut buf) {
3350            Ok(0) => None,
3351            Ok(_n) => {
3352                if buf.ends_with('\n') {
3353                    buf.pop();
3354                    if buf.ends_with('\r') {
3355                        buf.pop();
3356                    }
3357                }
3358                Some(Ok(buf))
3359            }
3360            Err(e) => Some(Err(e)),
3361        }
3362    }
3363}