TabularJobConfig — AWS SDK for Ruby V3 (original) (raw)

Instance Attribute Details

#candidate_generation_configTypes::CandidateGenerationConfig

The configuration information of how model candidates are generated.

44816 44817 44818 44819 44820 44821 44822 44823 44824 44825 44826 44827 # File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 44816 class TabularJobConfig < Struct.new( :candidate_generation_config, :completion_criteria, :feature_specification_s3_uri, :mode, :generate_candidate_definitions_only, :problem_type, :target_attribute_name, :sample_weight_attribute_name) SENSITIVE = [] include Aws::Structure end

#completion_criteriaTypes::AutoMLJobCompletionCriteria

How long a job is allowed to run, or how many candidates a job is allowed to generate.

44816 44817 44818 44819 44820 44821 44822 44823 44824 44825 44826 44827 # File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 44816 class TabularJobConfig < Struct.new( :candidate_generation_config, :completion_criteria, :feature_specification_s3_uri, :mode, :generate_candidate_definitions_only, :problem_type, :target_attribute_name, :sample_weight_attribute_name) SENSITIVE = [] include Aws::Structure end

#feature_specification_s3_uri ⇒ String

A URL to the Amazon S3 data source containing selected features from the input data source to run an Autopilot job V2. You can inputFeatureAttributeNames (optional) in JSON format as shown below:

{ "FeatureAttributeNames":["col1", "col2", ...] }.

You can also specify the data type of the feature (optional) in the format shown below:

{ "FeatureDataTypes":{"col1":"numeric", "col2":"categorical" ... } }

These column keys may not include the target column.

In ensembling mode, Autopilot only supports the following data types: numeric, categorical, text, and datetime. In HPO mode, Autopilot can support numeric, categorical, text,datetime, and sequence.

If only FeatureDataTypes is provided, the column keys (col1,col2,..) should be a subset of the column names in the input data.

If both FeatureDataTypes and FeatureAttributeNames are provided, then the column keys should be a subset of the column names provided in FeatureAttributeNames.

The key name FeatureAttributeNames is fixed. The values listed in["col1", "col2", ...] are case sensitive and should be a list of strings containing unique values that are a subset of the column names in the input data. The list of columns provided must not include the target column.

44816 44817 44818 44819 44820 44821 44822 44823 44824 44825 44826 44827 # File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 44816 class TabularJobConfig < Struct.new( :candidate_generation_config, :completion_criteria, :feature_specification_s3_uri, :mode, :generate_candidate_definitions_only, :problem_type, :target_attribute_name, :sample_weight_attribute_name) SENSITIVE = [] include Aws::Structure end

#generate_candidate_definitions_only ⇒ Boolean

Generates possible candidates without training the models. A model candidate is a combination of data preprocessors, algorithms, and algorithm parameter settings.

44816 44817 44818 44819 44820 44821 44822 44823 44824 44825 44826 44827 # File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 44816 class TabularJobConfig < Struct.new( :candidate_generation_config, :completion_criteria, :feature_specification_s3_uri, :mode, :generate_candidate_definitions_only, :problem_type, :target_attribute_name, :sample_weight_attribute_name) SENSITIVE = [] include Aws::Structure end

#mode ⇒ String

The method that Autopilot uses to train the data. You can either specify the mode manually or let Autopilot choose for you based on the dataset size by selecting AUTO. In AUTO mode, Autopilot chooses ENSEMBLING for datasets smaller than 100 MB, andHYPERPARAMETER_TUNING for larger ones.

The ENSEMBLING mode uses a multi-stack ensemble model to predict classification and regression tasks directly from your dataset. This machine learning mode combines several base models to produce an optimal predictive model. It then uses a stacking ensemble method to combine predictions from contributing members. A multi-stack ensemble model can provide better performance over a single model by combining the predictive capabilities of multiple models. SeeAutopilot algorithm support for a list of algorithms supported by ENSEMBLING mode.

The HYPERPARAMETER_TUNING (HPO) mode uses the best hyperparameters to train the best version of a model. HPO automatically selects an algorithm for the type of problem you want to solve. Then HPO finds the best hyperparameters according to your objective metric. SeeAutopilot algorithm support for a list of algorithms supported by HYPERPARAMETER_TUNING mode.

44816 44817 44818 44819 44820 44821 44822 44823 44824 44825 44826 44827 # File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 44816 class TabularJobConfig < Struct.new( :candidate_generation_config, :completion_criteria, :feature_specification_s3_uri, :mode, :generate_candidate_definitions_only, :problem_type, :target_attribute_name, :sample_weight_attribute_name) SENSITIVE = [] include Aws::Structure end

#problem_type ⇒ String

The type of supervised learning problem available for the model candidates of the AutoML job V2. For more information, see SageMaker Autopilot problem types.

You must either specify the type of supervised learning problem inProblemType and provide the AutoMLJobObjective metric, or none at all.

44816 44817 44818 44819 44820 44821 44822 44823 44824 44825 44826 44827 # File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 44816 class TabularJobConfig < Struct.new( :candidate_generation_config, :completion_criteria, :feature_specification_s3_uri, :mode, :generate_candidate_definitions_only, :problem_type, :target_attribute_name, :sample_weight_attribute_name) SENSITIVE = [] include Aws::Structure end

#sample_weight_attribute_name ⇒ String

If specified, this column name indicates which column of the dataset should be treated as sample weights for use by the objective metric during the training, evaluation, and the selection of the best model. This column is not considered as a predictive feature. For more information on Autopilot metrics, see Metrics and validation.

Sample weights should be numeric, non-negative, with larger values indicating which rows are more important than others. Data points that have invalid or no weight value are excluded.

Support for sample weights is available in Ensembling mode only.

44816 44817 44818 44819 44820 44821 44822 44823 44824 44825 44826 44827 # File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 44816 class TabularJobConfig < Struct.new( :candidate_generation_config, :completion_criteria, :feature_specification_s3_uri, :mode, :generate_candidate_definitions_only, :problem_type, :target_attribute_name, :sample_weight_attribute_name) SENSITIVE = [] include Aws::Structure end

#target_attribute_name ⇒ String

The name of the target variable in supervised learning, usually represented by 'y'.

44816 44817 44818 44819 44820 44821 44822 44823 44824 44825 44826 44827 # File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 44816 class TabularJobConfig < Struct.new( :candidate_generation_config, :completion_criteria, :feature_specification_s3_uri, :mode, :generate_candidate_definitions_only, :problem_type, :target_attribute_name, :sample_weight_attribute_name) SENSITIVE = [] include Aws::Structure end