jax.numpy.ndarray.at — JAX documentation (original) (raw)
jax.numpy.ndarray.at#
abstract property ndarray.at[source]#
Helper property for index update functionality.
The at
property provides a functionally pure equivalent of in-place array modifications.
In particular:
Alternate syntax | Equivalent In-place expression |
---|---|
x = x.at[idx].set(y) | x[idx] = y |
x = x.at[idx].add(y) | x[idx] += y |
x = x.at[idx].subtract(y) | x[idx] -= y |
x = x.at[idx].multiply(y) | x[idx] *= y |
x = x.at[idx].divide(y) | x[idx] /= y |
x = x.at[idx].power(y) | x[idx] **= y |
x = x.at[idx].min(y) | x[idx] = minimum(x[idx], y) |
x = x.at[idx].max(y) | x[idx] = maximum(x[idx], y) |
x = x.at[idx].apply(ufunc) | ufunc.at(x, idx) |
x = x.at[idx].get() | x = x[idx] |
None of the x.at
expressions modify the original x
; instead they return a modified copy of x
. However, inside a jit() compiled function, expressions like x = x.at[idx].set(y)
are guaranteed to be applied in-place.
Unlike NumPy in-place operations such as x[idx] += y
, if multiple indices refer to the same location, all updates will be applied (NumPy would only apply the last update, rather than applying all updates.) The order in which conflicting updates are applied is implementation-defined and may be nondeterministic (e.g., due to concurrency on some hardware platforms).
By default, JAX assumes that all indices are in-bounds. Alternative out-of-bound index semantics can be specified via the mode
parameter (see below).
Parameters:
- mode –
string specifying out-of-bound indexing mode. Options are:"promise_in_bounds"
: (default) The user promises that indices are in bounds. No additional checking will be performed. In practice, this means that out-of-bounds indices inget()
will be clipped, and out-of-bounds indices inset()
,add()
, etc. will be dropped."clip"
: clamp out of bounds indices into valid range."drop"
: ignore out-of-bound indices."fill"
: alias for"drop"
. For get(), the optionalfill_value
argument specifies the value that will be returned.
See jax.lax.GatherScatterMode for more details.
- wrap_negative_indices – If True (default) then negative indices indicate position from the end of the array, similar to Python and NumPy indexing. If False, then negative indices are considered out-of-bounds and behave according to the
mode
parameter. - fill_value – Only applies to the
get()
method: the fill value to return for out-of-bounds slices whenmode
is'fill'
. Ignored otherwise. Defaults toNaN
for inexact types, the largest negative value for signed types, the largest positive value for unsigned types, andTrue
for booleans. - indices_are_sorted – If True, the implementation will assume that the (normalized) indices passed to
at[]
are sorted in ascending order, which can lead to more efficient execution on some backends. If True but the indices are not actually sorted, the output is undefined. - unique_indices – If True, the implementation will assume that the (normalized) indices passed to
at[]
are unique, which can result in more efficient execution on some backends. If True but the indices are not actually unique, the output is undefined.
Examples
x = jnp.arange(5.0) x Array([0., 1., 2., 3., 4.], dtype=float32) x.at[2].get() Array(2., dtype=float32) x.at[2].add(10) Array([ 0., 1., 12., 3., 4.], dtype=float32)
By default, out-of-bound indices are ignored in updates, but this behavior can be controlled with the mode
parameter:
x.at[10].add(10) # dropped Array([0., 1., 2., 3., 4.], dtype=float32) x.at[20].add(10, mode='clip') # clipped Array([ 0., 1., 2., 3., 14.], dtype=float32)
For get()
, out-of-bound indices are clipped by default:
x.at[20].get() # out-of-bounds indices clipped Array(4., dtype=float32) x.at[20].get(mode='fill') # out-of-bounds indices filled with NaN Array(nan, dtype=float32) x.at[20].get(mode='fill', fill_value=-1) # custom fill value Array(-1., dtype=float32)
Negative indices count from the end of the array, but this behavior can be disabled by setting wrap_negative_indices = False
:
x.at[-1].set(99) Array([ 0., 1., 2., 3., 99.], dtype=float32) x.at[-1].set(99, wrap_negative_indices=False, mode='drop') # dropped! Array([0., 1., 2., 3., 4.], dtype=float32)