Index - LlamaIndex (original) (raw)

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 class BaseEmbedding(TransformComponent, DispatcherSpanMixin): """Base class for embeddings.""" model_config = ConfigDict( protected_namespaces=("pydantic_model_",), arbitrary_types_allowed=True ) model_name: str = Field( default="unknown", description="The name of the embedding model." ) embed_batch_size: int = Field( default=DEFAULT_EMBED_BATCH_SIZE, description="The batch size for embedding calls.", gt=0, le=2048, ) callback_manager: CallbackManager = Field( default_factory=lambda: CallbackManager([]), exclude=True ) num_workers: Optional[int] = Field( default=None, description="The number of workers to use for async embedding calls.", ) @field_validator("callback_manager") @classmethod def check_callback_manager(cls, v: CallbackManager) -> CallbackManager: if v is None: return CallbackManager([]) return v @abstractmethod def _get_query_embedding(self, query: str) -> Embedding: """ Embed the input query synchronously. Subclasses should implement this method. Reference get_query_embedding's docstring for more information. """ @abstractmethod async def _aget_query_embedding(self, query: str) -> Embedding: """ Embed the input query asynchronously. Subclasses should implement this method. Reference get_query_embedding's docstring for more information. """ @dispatcher.span def get_query_embedding(self, query: str) -> Embedding: """ Embed the input query. When embedding a query, depending on the model, a special instruction can be prepended to the raw query string. For example, "Represent the question for retrieving supporting documents: ". If you're curious, other examples of predefined instructions can be found in embeddings/huggingface_utils.py. """ model_dict = self.to_dict() model_dict.pop("api_key", None) dispatcher.event( EmbeddingStartEvent( model_dict=model_dict, ) ) with self.callback_manager.event( CBEventType.EMBEDDING, payload={EventPayload.SERIALIZED: self.to_dict()} ) as event: query_embedding = self._get_query_embedding(query) event.on_end( payload={ EventPayload.CHUNKS: [query], EventPayload.EMBEDDINGS: [query_embedding], }, ) dispatcher.event( EmbeddingEndEvent( chunks=[query], embeddings=[query_embedding], ) ) return query_embedding @dispatcher.span async def aget_query_embedding(self, query: str) -> Embedding: """Get query embedding.""" model_dict = self.to_dict() model_dict.pop("api_key", None) dispatcher.event( EmbeddingStartEvent( model_dict=model_dict, ) ) with self.callback_manager.event( CBEventType.EMBEDDING, payload={EventPayload.SERIALIZED: self.to_dict()} ) as event: query_embedding = await self._aget_query_embedding(query) event.on_end( payload={ EventPayload.CHUNKS: [query], EventPayload.EMBEDDINGS: [query_embedding], }, ) dispatcher.event( EmbeddingEndEvent( chunks=[query], embeddings=[query_embedding], ) ) return query_embedding def get_agg_embedding_from_queries( self, queries: List[str], agg_fn: Optional[Callable[..., Embedding]] = None, ) -> Embedding: """Get aggregated embedding from multiple queries.""" query_embeddings = [self.get_query_embedding(query) for query in queries] agg_fn = agg_fn or mean_agg return agg_fn(query_embeddings) async def aget_agg_embedding_from_queries( self, queries: List[str], agg_fn: Optional[Callable[..., Embedding]] = None, ) -> Embedding: """Async get aggregated embedding from multiple queries.""" query_embeddings = [await self.aget_query_embedding(query) for query in queries] agg_fn = agg_fn or mean_agg return agg_fn(query_embeddings) @abstractmethod def _get_text_embedding(self, text: str) -> Embedding: """ Embed the input text synchronously. Subclasses should implement this method. Reference get_text_embedding's docstring for more information. """ async def _aget_text_embedding(self, text: str) -> Embedding: """ Embed the input text asynchronously. Subclasses can implement this method if there is a true async implementation. Reference get_text_embedding's docstring for more information. """ # Default implementation just falls back on _get_text_embedding return self._get_text_embedding(text) def _get_text_embeddings(self, texts: List[str]) -> List[Embedding]: """ Embed the input sequence of text synchronously. Subclasses can implement this method if batch queries are supported. """ # Default implementation just loops over _get_text_embedding return [self._get_text_embedding(text) for text in texts] async def _aget_text_embeddings(self, texts: List[str]) -> List[Embedding]: """ Embed the input sequence of text asynchronously. Subclasses can implement this method if batch queries are supported. """ return await asyncio.gather( *[self._aget_text_embedding(text) for text in texts] ) @dispatcher.span def get_text_embedding(self, text: str) -> Embedding: """ Embed the input text. When embedding text, depending on the model, a special instruction can be prepended to the raw text string. For example, "Represent the document for retrieval: ". If you're curious, other examples of predefined instructions can be found in embeddings/huggingface_utils.py. """ model_dict = self.to_dict() model_dict.pop("api_key", None) dispatcher.event( EmbeddingStartEvent( model_dict=model_dict, ) ) with self.callback_manager.event( CBEventType.EMBEDDING, payload={EventPayload.SERIALIZED: self.to_dict()} ) as event: text_embedding = self._get_text_embedding(text) event.on_end( payload={ EventPayload.CHUNKS: [text], EventPayload.EMBEDDINGS: [text_embedding], } ) dispatcher.event( EmbeddingEndEvent( chunks=[text], embeddings=[text_embedding], ) ) return text_embedding @dispatcher.span async def aget_text_embedding(self, text: str) -> Embedding: """Async get text embedding.""" model_dict = self.to_dict() model_dict.pop("api_key", None) dispatcher.event( EmbeddingStartEvent( model_dict=model_dict, ) ) with self.callback_manager.event( CBEventType.EMBEDDING, payload={EventPayload.SERIALIZED: self.to_dict()} ) as event: text_embedding = await self._aget_text_embedding(text) event.on_end( payload={ EventPayload.CHUNKS: [text], EventPayload.EMBEDDINGS: [text_embedding], } ) dispatcher.event( EmbeddingEndEvent( chunks=[text], embeddings=[text_embedding], ) ) return text_embedding @dispatcher.span def get_text_embedding_batch( self, texts: List[str], show_progress: bool = False, **kwargs: Any, ) -> List[Embedding]: """Get a list of text embeddings, with batching.""" cur_batch: List[str] = [] result_embeddings: List[Embedding] = [] queue_with_progress = enumerate( get_tqdm_iterable(texts, show_progress, "Generating embeddings") ) model_dict = self.to_dict() model_dict.pop("api_key", None) for idx, text in queue_with_progress: cur_batch.append(text) if idx == len(texts) - 1 or len(cur_batch) == self.embed_batch_size: # flush dispatcher.event( EmbeddingStartEvent( model_dict=model_dict, ) ) with self.callback_manager.event( CBEventType.EMBEDDING, payload={EventPayload.SERIALIZED: self.to_dict()}, ) as event: embeddings = self._get_text_embeddings(cur_batch) result_embeddings.extend(embeddings) event.on_end( payload={ EventPayload.CHUNKS: cur_batch, EventPayload.EMBEDDINGS: embeddings, }, ) dispatcher.event( EmbeddingEndEvent( chunks=cur_batch, embeddings=embeddings, ) ) cur_batch = [] return result_embeddings @dispatcher.span async def aget_text_embedding_batch( self, texts: List[str], show_progress: bool = False ) -> List[Embedding]: """Asynchronously get a list of text embeddings, with batching.""" num_workers = self.num_workers model_dict = self.to_dict() model_dict.pop("api_key", None) cur_batch: List[str] = [] callback_payloads: List[Tuple[str, List[str]]] = [] result_embeddings: List[Embedding] = [] embeddings_coroutines: List[Coroutine] = [] for idx, text in enumerate(texts): cur_batch.append(text) if idx == len(texts) - 1 or len(cur_batch) == self.embed_batch_size: # flush dispatcher.event( EmbeddingStartEvent( model_dict=model_dict, ) ) event_id = self.callback_manager.on_event_start( CBEventType.EMBEDDING, payload={EventPayload.SERIALIZED: self.to_dict()}, ) callback_payloads.append((event_id, cur_batch)) embeddings_coroutines.append(self._aget_text_embeddings(cur_batch)) cur_batch = [] # flatten the results of asyncio.gather, which is a list of embeddings lists nested_embeddings = [] if num_workers and num_workers > 1: nested_embeddings = await run_jobs( embeddings_coroutines, show_progress=show_progress, workers=self.num_workers, desc="Generating embeddings", ) else: if show_progress: try: from tqdm.asyncio import tqdm_asyncio nested_embeddings = await tqdm_asyncio.gather( *embeddings_coroutines, total=len(embeddings_coroutines), desc="Generating embeddings", ) except ImportError: nested_embeddings = await asyncio.gather(*embeddings_coroutines) else: nested_embeddings = await asyncio.gather(*embeddings_coroutines) result_embeddings = [ embedding for embeddings in nested_embeddings for embedding in embeddings ] for (event_id, text_batch), embeddings in zip( callback_payloads, nested_embeddings ): dispatcher.event( EmbeddingEndEvent( chunks=text_batch, embeddings=embeddings, ) ) self.callback_manager.on_event_end( CBEventType.EMBEDDING, payload={ EventPayload.CHUNKS: text_batch, EventPayload.EMBEDDINGS: embeddings, }, event_id=event_id, ) return result_embeddings def similarity( self, embedding1: Embedding, embedding2: Embedding, mode: SimilarityMode = SimilarityMode.DEFAULT, ) -> float: """Get embedding similarity.""" return similarity(embedding1=embedding1, embedding2=embedding2, mode=mode) def __call__(self, nodes: Sequence[BaseNode], **kwargs: Any) -> Sequence[BaseNode]: embeddings = self.get_text_embedding_batch( [node.get_content(metadata_mode=MetadataMode.EMBED) for node in nodes], **kwargs, ) for node, embedding in zip(nodes, embeddings): node.embedding = embedding return nodes async def acall( self, nodes: Sequence[BaseNode], **kwargs: Any ) -> Sequence[BaseNode]: embeddings = await self.aget_text_embedding_batch( [node.get_content(metadata_mode=MetadataMode.EMBED) for node in nodes], **kwargs, ) for node, embedding in zip(nodes, embeddings): node.embedding = embedding return nodes