Routing in ASP.NET Core (original) (raw)

By Ryan Nowak, Kirk Larkin, and Rick Anderson

Important

This information relates to a pre-release product that may be substantially modified before it's commercially released. Microsoft makes no warranties, express or implied, with respect to the information provided here.

For the current release, see the .NET 9 version of this article.

Routing is responsible for matching incoming HTTP requests and dispatching those requests to the app's executable endpoints. Endpoints are the app's units of executable request-handling code. Endpoints are defined in the app and configured when the app starts. The endpoint matching process can extract values from the request's URL and provide those values for request processing. Using endpoint information from the app, routing is also able to generate URLs that map to endpoints.

Apps can configure routing using:

This article covers low-level details of ASP.NET Core routing. For information on configuring routing:

Routing basics

The following code shows a basic example of routing:

var builder = WebApplication.CreateBuilder(args);
var app = builder.Build();

app.MapGet("/", () => "Hello World!");

app.Run();

The preceding example includes a single endpoint using the MapGet method:

Routing uses a pair of middleware, registered by UseRouting and UseEndpoints:

Apps typically don't need to call UseRouting or UseEndpoints. WebApplicationBuilder configures a middleware pipeline that wraps middleware added in Program.cs with UseRouting and UseEndpoints. However, apps can change the order in which UseRouting and UseEndpoints run by calling these methods explicitly. For example, the following code makes an explicit call to UseRouting:

app.Use(async (context, next) =>
{
    // ...
    await next(context);
});

app.UseRouting();

app.MapGet("/", () => "Hello World!");

In the preceding code:

If the preceding example didn't include a call to UseRouting, the custom middleware would run after the route matching middleware.

Note: Routes added directly to the WebApplication execute at the end of the pipeline.

Endpoints

The MapGet method is used to define an endpoint. An endpoint is something that can be:

Endpoints that can be matched and executed by the app are configured in UseEndpoints. For example, MapGet, MapPost, and similar methods connect request delegates to the routing system. Additional methods can be used to connect ASP.NET Core framework features to the routing system:

The following example shows routing with a more sophisticated route template:

app.MapGet("/hello/{name:alpha}", (string name) => $"Hello {name}!");

The string /hello/{name:alpha} is a route template. A route template is used to configure how the endpoint is matched. In this case, the template matches:

The second segment of the URL path, {name:alpha}:

The following example shows routing with health checks and authorization:

app.UseAuthentication();
app.UseAuthorization();

app.MapHealthChecks("/healthz").RequireAuthorization();
app.MapGet("/", () => "Hello World!");

The preceding example demonstrates how:

The MapHealthChecks call adds a health check endpoint. Chaining RequireAuthorization on to this call attaches an authorization policy to the endpoint.

Calling UseAuthentication and UseAuthorization adds the authentication and authorization middleware. These middleware are placed between UseRouting and UseEndpoints so that they can:

Endpoint metadata

In the preceding example, there are two endpoints, but only the health check endpoint has an authorization policy attached. If the request matches the health check endpoint, /healthz, an authorization check is performed. This demonstrates that endpoints can have extra data attached to them. This extra data is called endpoint metadata:

Routing concepts

The routing system builds on top of the middleware pipeline by adding the powerful endpoint concept. Endpoints represent units of the app's functionality that are distinct from each other in terms of routing, authorization, and any number of ASP.NET Core's systems.

ASP.NET Core endpoint definition

An ASP.NET Core endpoint is:

The following code shows how to retrieve and inspect the endpoint matching the current request:

app.Use(async (context, next) =>
{
    var currentEndpoint = context.GetEndpoint();

    if (currentEndpoint is null)
    {
        await next(context);
        return;
    }

    Console.WriteLine($"Endpoint: {currentEndpoint.DisplayName}");

    if (currentEndpoint is RouteEndpoint routeEndpoint)
    {
        Console.WriteLine($"  - Route Pattern: {routeEndpoint.RoutePattern}");
    }

    foreach (var endpointMetadata in currentEndpoint.Metadata)
    {
        Console.WriteLine($"  - Metadata: {endpointMetadata}");
    }

    await next(context);
});

app.MapGet("/", () => "Inspect Endpoint.");

The endpoint, if selected, can be retrieved from the HttpContext. Its properties can be inspected. Endpoint objects are immutable and cannot be modified after creation. The most common type of endpoint is a RouteEndpoint. RouteEndpoint includes information that allows it to be selected by the routing system.

In the preceding code, app.Use configures an inline middleware.

The following code shows that, depending on where app.Use is called in the pipeline, there may not be an endpoint:

// Location 1: before routing runs, endpoint is always null here.
app.Use(async (context, next) =>
{
    Console.WriteLine($"1. Endpoint: {context.GetEndpoint()?.DisplayName ?? "(null)"}");
    await next(context);
});

app.UseRouting();

// Location 2: after routing runs, endpoint will be non-null if routing found a match.
app.Use(async (context, next) =>
{
    Console.WriteLine($"2. Endpoint: {context.GetEndpoint()?.DisplayName ?? "(null)"}");
    await next(context);
});

// Location 3: runs when this endpoint matches
app.MapGet("/", (HttpContext context) =>
{
    Console.WriteLine($"3. Endpoint: {context.GetEndpoint()?.DisplayName ?? "(null)"}");
    return "Hello World!";
}).WithDisplayName("Hello");

app.UseEndpoints(_ => { });

// Location 4: runs after UseEndpoints - will only run if there was no match.
app.Use(async (context, next) =>
{
    Console.WriteLine($"4. Endpoint: {context.GetEndpoint()?.DisplayName ?? "(null)"}");
    await next(context);
});

The preceding sample adds Console.WriteLine statements that display whether or not an endpoint has been selected. For clarity, the sample assigns a display name to the provided / endpoint.

The preceding sample also includes calls to UseRouting and UseEndpoints to control exactly when these middleware run within the pipeline.

Running this code with a URL of / displays:

1. Endpoint: (null)
2. Endpoint: Hello
3. Endpoint: Hello

Running this code with any other URL displays:

1. Endpoint: (null)
2. Endpoint: (null)
4. Endpoint: (null)

This output demonstrates that:

The UseRouting middleware uses the SetEndpoint method to attach the endpoint to the current context. It's possible to replace the UseRouting middleware with custom logic and still get the benefits of using endpoints. Endpoints are a low-level primitive like middleware, and aren't coupled to the routing implementation. Most apps don't need to replace UseRouting with custom logic.

The UseEndpoints middleware is designed to be used in tandem with the UseRouting middleware. The core logic to execute an endpoint isn't complicated. Use GetEndpoint to retrieve the endpoint, and then invoke its RequestDelegate property.

The following code demonstrates how middleware can influence or react to routing:

app.UseHttpMethodOverride();
app.UseRouting();

app.Use(async (context, next) =>
{
    if (context.GetEndpoint()?.Metadata.GetMetadata<RequiresAuditAttribute>() is not null)
    {
        Console.WriteLine($"ACCESS TO SENSITIVE DATA AT: {DateTime.UtcNow}");
    }

    await next(context);
});

app.MapGet("/", () => "Audit isn't required.");
app.MapGet("/sensitive", () => "Audit required for sensitive data.")
    .WithMetadata(new RequiresAuditAttribute());
public class RequiresAuditAttribute : Attribute { }

The preceding example demonstrates two important concepts:

The preceding code shows an example of a custom middleware that supports per-endpoint policies. The middleware writes an audit log of access to sensitive data to the console. The middleware can be configured to audit an endpoint with the RequiresAuditAttribute metadata. This sample demonstrates an opt-in pattern where only endpoints that are marked as sensitive are audited. It's possible to define this logic in reverse, auditing everything that isn't marked as safe, for example. The endpoint metadata system is flexible. This logic could be designed in whatever way suits the use case.

The preceding sample code is intended to demonstrate the basic concepts of endpoints. The sample is not intended for production use. A more complete version of an audit log middleware would:

The audit policy metadata RequiresAuditAttribute is defined as an Attribute for easier use with class-based frameworks such as controllers and SignalR. When using route to code:

The best practices for metadata types are to define them either as interfaces or attributes. Interfaces and attributes allow code reuse. The metadata system is flexible and doesn't impose any limitations.

Compare terminal middleware with routing

The following example demonstrates both terminal middleware and routing:

// Approach 1: Terminal Middleware.
app.Use(async (context, next) =>
{
    if (context.Request.Path == "/")
    {
        await context.Response.WriteAsync("Terminal Middleware.");
        return;
    }

    await next(context);
});

app.UseRouting();

// Approach 2: Routing.
app.MapGet("/Routing", () => "Routing.");

The style of middleware shown with Approach 1: is terminal middleware. It's called terminal middleware because it does a matching operation:

It's called terminal middleware because it terminates the search, executes some functionality, and then returns.

The following list compares terminal middleware with routing:

An endpoint defines both:

Terminal middleware can be an effective tool, but can require:

Consider integrating with routing before writing a terminal middleware.

Existing terminal middleware that integrates with Map or MapWhen can usually be turned into a routing aware endpoint. MapHealthChecks demonstrates the pattern for router-ware:

The following code shows use of MapHealthChecks:

app.UseAuthentication();
app.UseAuthorization();

app.MapHealthChecks("/healthz").RequireAuthorization();

The preceding sample shows why returning the builder object is important. Returning the builder object allows the app developer to configure policies such as authorization for the endpoint. In this example, the health checks middleware has no direct integration with the authorization system.

The metadata system was created in response to the problems encountered by extensibility authors using terminal middleware. It's problematic for each middleware to implement its own integration with the authorization system.

URL matching

When a routing middleware executes, it sets an Endpoint and route values to a request feature on the HttpContext from the current request:

Middleware that runs after the routing middleware can inspect the endpoint and take action. For example, an authorization middleware can interrogate the endpoint's metadata collection for an authorization policy. After all of the middleware in the request processing pipeline is executed, the selected endpoint's delegate is invoked.

The routing system in endpoint routing is responsible for all dispatching decisions. Because the middleware applies policies based on the selected endpoint, it's important that:

Warning

For backward-compatibility, when a Controller or Razor Pages endpoint delegate is executed, the properties of RouteContext.RouteData are set to appropriate values based on the request processing performed thus far.

The RouteContext type will be marked obsolete in a future release:

URL matching operates in a configurable set of phases. In each phase, the output is a set of matches. The set of matches can be narrowed down further by the next phase. The routing implementation does not guarantee a processing order for matching endpoints. All possible matches are processed at once. The URL matching phases occur in the following order. ASP.NET Core:

  1. Processes the URL path against the set of endpoints and their route templates, collecting all of the matches.
  2. Takes the preceding list and removes matches that fail with route constraints applied.
  3. Takes the preceding list and removes matches that fail the set of MatcherPolicy instances.
  4. Uses the EndpointSelector to make a final decision from the preceding list.

The list of endpoints is prioritized according to:

All matching endpoints are processed in each phase until the EndpointSelector is reached. The EndpointSelector is the final phase. It chooses the highest priority endpoint from the matches as the best match. If there are other matches with the same priority as the best match, an ambiguous match exception is thrown.

The route precedence is computed based on a more specific route template being given a higher priority. For example, consider the templates /hello and /{message}:

In general, route precedence does a good job of choosing the best match for the kinds of URL schemes used in practice. Use Order only when necessary to avoid an ambiguity.

Due to the kinds of extensibility provided by routing, it isn't possible for the routing system to compute ahead of time the ambiguous routes. Consider an example such as the route templates /{message:alpha} and /{message:int}:

Warning

The order of operations inside UseEndpoints doesn't influence the behavior of routing, with one exception. MapControllerRoute and MapAreaRoute automatically assign an order value to their endpoints based on the order they are invoked. This simulates long-time behavior of controllers without the routing system providing the same guarantees as older routing implementations.

Endpoint routing in ASP.NET Core:

Route template precedence and endpoint selection order

Route template precedence is a system that assigns each route template a value based on how specific it is. Route template precedence:

For example, consider templates /Products/List and /Products/{id}. It would be reasonable to assume that /Products/List is a better match than /Products/{id} for the URL path /Products/List. This works because the literal segment /List is considered to have better precedence than the parameter segment /{id}.

The details of how precedence works are coupled to how route templates are defined:

URL generation concepts

URL generation:

Endpoint routing includes the LinkGenerator API. LinkGenerator is a singleton service available from DI. The LinkGenerator API can be used outside of the context of an executing request. Mvc.IUrlHelper and scenarios that rely on IUrlHelper, such as Tag Helpers, HTML Helpers, and Action Results, use the LinkGenerator API internally to provide link generating capabilities.

The link generator is backed by the concept of an address and address schemes. An address scheme is a way of determining the endpoints that should be considered for link generation. For example, the route name and route values scenarios many users are familiar with from controllers and Razor Pages are implemented as an address scheme.

The link generator can link to controllers and Razor Pages via the following extension methods:

Overloads of these methods accept arguments that include the HttpContext. These methods are functionally equivalent to Url.Action and Url.Page, but offer additional flexibility and options.

The GetPath* methods are most similar to Url.Action and Url.Page, in that they generate a URI containing an absolute path. The GetUri* methods always generate an absolute URI containing a scheme and host. The methods that accept an HttpContext generate a URI in the context of the executing request. The ambient route values, URL base path, scheme, and host from the executing request are used unless overridden.

LinkGenerator is called with an address. Generating a URI occurs in two steps:

  1. An address is bound to a list of endpoints that match the address.
  2. Each endpoint's RoutePattern is evaluated until a route pattern that matches the supplied values is found. The resulting output is combined with the other URI parts supplied to the link generator and returned.

The methods provided by LinkGenerator support standard link generation capabilities for any type of address. The most convenient way to use the link generator is through extension methods that perform operations for a specific address type:

Extension Method Description
GetPathByAddress Generates a URI with an absolute path based on the provided values.
GetUriByAddress Generates an absolute URI based on the provided values.

Warning

Pay attention to the following implications of calling LinkGenerator methods:

Middleware example

In the following example, a middleware uses the LinkGenerator API to create a link to an action method that lists store products. Using the link generator by injecting it into a class and calling GenerateLink is available to any class in an app:

public class ProductsMiddleware
{
    private readonly LinkGenerator _linkGenerator;

    public ProductsMiddleware(RequestDelegate next, LinkGenerator linkGenerator) =>
        _linkGenerator = linkGenerator;

    public async Task InvokeAsync(HttpContext httpContext)
    {
        httpContext.Response.ContentType = MediaTypeNames.Text.Plain;

        var productsPath = _linkGenerator.GetPathByAction("Products", "Store");

        await httpContext.Response.WriteAsync(
            $"Go to {productsPath} to see our products.");
    }
}

Route templates

Tokens within {} define route parameters that are bound if the route is matched. More than one route parameter can be defined in a route segment, but route parameters must be separated by a literal value. For example:

{controller=Home}{action=Index}

isn't a valid route, because there's no literal value between {controller} and {action}. Route parameters must have a name and may have additional attributes specified.

Literal text other than route parameters (for example, {id}) and the path separator / must match the text in the URL. Text matching is case-insensitive and based on the decoded representation of the URL's path. To match a literal route parameter delimiter { or }, escape the delimiter by repeating the character. For example {{ or }}.

Asterisk * or double asterisk **:

Warning

A catch-all parameter may match routes incorrectly due to a bug in routing. Apps impacted by this bug have the following characteristics:

See GitHub bugs 18677 and 16579 for example cases that hit this bug.

An opt-in fix for this bug is contained in .NET Core 3.1.301 or later SDK. The following code sets an internal switch that fixes this bug:

public static void Main(string[] args)
{
   AppContext.SetSwitch("Microsoft.AspNetCore.Routing.UseCorrectCatchAllBehavior", 
                         true);
   CreateHostBuilder(args).Build().Run();
}
// Remaining code removed for brevity.

Catch-all parameters can also match the empty string.

The catch-all parameter escapes the appropriate characters when the route is used to generate a URL, including path separator / characters. For example, the route foo/{*path} with route values { path = "my/path" } generates foo/my%2Fpath. Note the escaped forward slash. To round-trip path separator characters, use the ** route parameter prefix. The route foo/{**path} with { path = "my/path" } generates foo/my/path.

URL patterns that attempt to capture a file name with an optional file extension have additional considerations. For example, consider the template files/{filename}.{ext?}. When values for both filename and ext exist, both values are populated. If only a value for filename exists in the URL, the route matches because the trailing . is optional. The following URLs match this route:

Route parameters may have default values designated by specifying the default value after the parameter name separated by an equals sign (=). For example, {controller=Home} defines Home as the default value for controller. The default value is used if no value is present in the URL for the parameter. Route parameters are made optional by appending a question mark (?) to the end of the parameter name. For example, id?. The difference between optional values and default route parameters is:

Route parameters may have constraints that must match the route value bound from the URL. Adding : and constraint name after the route parameter name specifies an inline constraint on a route parameter. If the constraint requires arguments, they're enclosed in parentheses (...) after the constraint name. Multiple inline constraints can be specified by appending another : and constraint name.

The constraint name and arguments are passed to the IInlineConstraintResolver service to create an instance of IRouteConstraint to use in URL processing. For example, the route template blog/{article:minlength(10)} specifies a minlength constraint with the argument 10. For more information on route constraints and a list of the constraints provided by the framework, see the Route constraints section.

Route parameters may also have parameter transformers. Parameter transformers transform a parameter's value when generating links and matching actions and pages to URLs. Like constraints, parameter transformers can be added inline to a route parameter by adding a : and transformer name after the route parameter name. For example, the route template blog/{article:slugify} specifies a slugify transformer. For more information on parameter transformers, see the Parameter transformers section.

The following table demonstrates example route templates and their behavior:

Route Template Example Matching URI The request URI…
hello /hello Only matches the single path /hello.
{Page=Home} / Matches and sets Page to Home.
{Page=Home} /Contact Matches and sets Page to Contact.
{controller}/{action}/{id?} /Products/List Maps to the Products controller and List action.
{controller}/{action}/{id?} /Products/Details/123 Maps to the Products controller and Details action withid set to 123.
{controller=Home}/{action=Index}/{id?} / Maps to the Home controller and Index method. id is ignored.
{controller=Home}/{action=Index}/{id?} /Products Maps to the Products controller and Index method. id is ignored.

Using a template is generally the simplest approach to routing. Constraints and defaults can also be specified outside the route template.

Complex segments

Complex segments are processed by matching up literal delimiters from right to left in a non-greedy way. For example, [Route("/a{b}c{d}")] is a complex segment. Complex segments work in a particular way that must be understood to use them successfully. The example in this section demonstrates why complex segments only really work well when the delimiter text doesn't appear inside the parameter values. Using a regex and then manually extracting the values is needed for more complex cases.

This is a summary of the steps that routing performs with the template /a{b}c{d} and the URL path /abcd. The | is used to help visualize how the algorithm works:

Here's an example of a negative case using the same template /a{b}c{d} and the URL path /aabcd. The | is used to help visualize how the algorithm works. This case isn't a match, which is explained by the same algorithm:

Since the matching algorithm is non-greedy:

Regular expressions provide much more control over their matching behavior.

Greedy matching, also known as maximal matching attempts to find the longest possible match in the input text that satisfies the regex pattern. Non-greedy matching, also known as lazy matching, seeks the shortest possible match in the input text that satisfies the regex pattern.

Routing with special characters

Routing with special characters can lead to unexpected results. For example, consider a controller with the following action method:

[HttpGet("{id?}/name")]
public async Task<ActionResult<string>> GetName(string id)
{
    var todoItem = await _context.TodoItems.FindAsync(id);

    if (todoItem == null || todoItem.Name == null)
    {
        return NotFound();
    }

    return todoItem.Name;
}

When string id contains the following encoded values, unexpected results might occur:

ASCII Encoded
/ %2F
+

Route parameters are not always URL decoded. This problem may be addressed in the future. For more information, see this GitHub issue;

Route constraints

Route constraints execute when a match has occurred to the incoming URL and the URL path is tokenized into route values. Route constraints generally inspect the route value associated via the route template and make a true or false decision about whether the value is acceptable. Some route constraints use data outside the route value to consider whether the request can be routed. For example, the HttpMethodRouteConstraint can accept or reject a request based on its HTTP verb. Constraints are used in routing requests and link generation.

Warning

Don't use constraints for input validation. If constraints are used for input validation, invalid input results in a 404 Not Found response. Invalid input should produce a 400 Bad Request with an appropriate error message. Route constraints are used to disambiguate similar routes, not to validate the inputs for a particular route.

The following table demonstrates example route constraints and their expected behavior:

constraint Example Example Matches Notes
int {id:int} 123456789, -123456789 Matches any integer
bool {active:bool} true, FALSE Matches true or false. Case-insensitive
datetime {dob:datetime} 2016-12-31, 2016-12-31 7:32pm Matches a valid DateTime value in the invariant culture. See preceding warning.
decimal {price:decimal} 49.99, -1,000.01 Matches a valid decimal value in the invariant culture. See preceding warning.
double {weight:double} 1.234, -1,001.01e8 Matches a valid double value in the invariant culture. See preceding warning.
float {weight:float} 1.234, -1,001.01e8 Matches a valid float value in the invariant culture. See preceding warning.
guid {id:guid} CD2C1638-1638-72D5-1638-DEADBEEF1638 Matches a valid Guid value
long {ticks:long} 123456789, -123456789 Matches a valid long value
minlength(value) {username:minlength(4)} Rick String must be at least 4 characters
maxlength(value) {filename:maxlength(8)} MyFile String must be no more than 8 characters
length(length) {filename:length(12)} somefile.txt String must be exactly 12 characters long
length(min,max) {filename:length(8,16)} somefile.txt String must be at least 8 and no more than 16 characters long
min(value) {age:min(18)} 19 Integer value must be at least 18
max(value) {age:max(120)} 91 Integer value must be no more than 120
range(min,max) {age:range(18,120)} 91 Integer value must be at least 18 but no more than 120
alpha {name:alpha} Rick String must consist of one or more alphabetical characters, a-z and case-insensitive.
regex(expression) {ssn:regex(^\\d{{3}}-\\d{{2}}-\\d{{4}}$)} 123-45-6789 String must match the regular expression. See tips about defining a regular expression.
required {name:required} Rick Used to enforce that a non-parameter value is present during URL generation

Multiple, colon delimited constraints can be applied to a single parameter. For example, the following constraint restricts a parameter to an integer value of 1 or greater:

[Route("users/{id:int:min(1)}")]
public User GetUserById(int id) { }

Warning

Route constraints that verify the URL and are converted to a CLR type always use the invariant culture. For example, conversion to the CLR type int or DateTime. These constraints assume that the URL is not localizable. The framework-provided route constraints don't modify the values stored in route values. All route values parsed from the URL are stored as strings. For example, the float constraint attempts to convert the route value to a float, but the converted value is used only to verify it can be converted to a float.

Regular expressions in constraints

Regular expressions can be specified as inline constraints using the regex(...) route constraint. Methods in the MapControllerRoute family also accept an object literal of constraints. If that form is used, string values are interpreted as regular expressions.

The following code uses an inline regex constraint:

app.MapGet("{message:regex(^\\d{{3}}-\\d{{2}}-\\d{{4}}$)}",
    () => "Inline Regex Constraint Matched");

The following code uses an object literal to specify a regex constraint:

app.MapControllerRoute(
    name: "people",
    pattern: "people/{ssn}",
    constraints: new { ssn = "^\\d{3}-\\d{2}-\\d{4}$", },
    defaults: new { controller = "People", action = "List" });

The ASP.NET Core framework adds RegexOptions.IgnoreCase | RegexOptions.Compiled | RegexOptions.CultureInvariant to the regular expression constructor. See RegexOptions for a description of these members.

Regular expressions use delimiters and tokens similar to those used by routing and the C# language. Regular expression tokens must be escaped. To use the regular expression ^\d{3}-\d{2}-\d{4}$ in an inline constraint, use one of the following:

To escape routing parameter delimiter characters {, }, [, ], double the characters in the expression, for example, {{, }}, [[, ]]. The following table shows a regular expression and its escaped version:

Regular expression Escaped regular expression
^\d{3}-\d{2}-\d{4}$ ^\\d{{3}}-\\d{{2}}-\\d{{4}}$
^[a-z]{2}$ ^[[a-z]]{{2}}$

Regular expressions used in routing often start with the ^ character and match the starting position of the string. The expressions often end with the $ character and match the end of the string. The ^ and $ characters ensure that the regular expression matches the entire route parameter value. Without the ^ and $ characters, the regular expression matches any substring within the string, which is often undesirable. The following table provides examples and explains why they match or fail to match:

Expression String Match Comment
[a-z]{2} hello Yes Substring matches
[a-z]{2} 123abc456 Yes Substring matches
[a-z]{2} mz Yes Matches expression
[a-z]{2} MZ Yes Not case sensitive
^[a-z]{2}$ hello No See ^ and $ above
^[a-z]{2}$ 123abc456 No See ^ and $ above

For more information on regular expression syntax, see .NET Framework Regular Expressions.

To constrain a parameter to a known set of possible values, use a regular expression. For example, {action:regex(^(list|get|create)$)} only matches the action route value to list, get, or create. If passed into the constraints dictionary, the string ^(list|get|create)$ is equivalent. Constraints that are passed in the constraints dictionary that don't match one of the known constraints are also treated as regular expressions. Constraints that are passed within a template that don't match one of the known constraints are not treated as regular expressions.

Custom route constraints

Custom route constraints can be created by implementing the IRouteConstraint interface. The IRouteConstraint interface contains Match, which returns true if the constraint is satisfied and false otherwise.

Custom route constraints are rarely needed. Before implementing a custom route constraint, consider alternatives, such as model binding.

The ASP.NET Core Constraints folder provides good examples of creating constraints. For example, GuidRouteConstraint.

To use a custom IRouteConstraint, the route constraint type must be registered with the app's ConstraintMap in the service container. A ConstraintMap is a dictionary that maps route constraint keys to IRouteConstraint implementations that validate those constraints. An app's ConstraintMap can be updated in Program.cs either as part of an AddRouting call or by configuring RouteOptions directly with builder.Services.Configure<RouteOptions>. For example:

builder.Services.AddRouting(options =>
    options.ConstraintMap.Add("noZeroes", typeof(NoZeroesRouteConstraint)));

The preceding constraint is applied in the following code:

[ApiController]
[Route("api/[controller]")]
public class NoZeroesController : ControllerBase
{
    [HttpGet("{id:noZeroes}")]
    public IActionResult Get(string id) =>
        Content(id);
}

The implementation of NoZeroesRouteConstraint prevents 0 being used in a route parameter:

public class NoZeroesRouteConstraint : IRouteConstraint
{
    private static readonly Regex _regex = new(
        @"^[1-9]*$",
        RegexOptions.CultureInvariant | RegexOptions.IgnoreCase,
        TimeSpan.FromMilliseconds(100));

    public bool Match(
        HttpContext? httpContext, IRouter? route, string routeKey,
        RouteValueDictionary values, RouteDirection routeDirection)
    {
        if (!values.TryGetValue(routeKey, out var routeValue))
        {
            return false;
        }

        var routeValueString = Convert.ToString(routeValue, CultureInfo.InvariantCulture);

        if (routeValueString is null)
        {
            return false;
        }

        return _regex.IsMatch(routeValueString);
    }
}

The preceding code:

The following code is a better approach to preventing an id containing a 0 from being processed:

[HttpGet("{id}")]
public IActionResult Get(string id)
{
    if (id.Contains('0'))
    {
        return StatusCode(StatusCodes.Status406NotAcceptable);
    }

    return Content(id);
}

The preceding code has the following advantages over the NoZeroesRouteConstraint approach:

Parameter transformers

Parameter transformers:

For example, a custom slugify parameter transformer in route pattern blog\{article:slugify} with Url.Action(new { article = "MyTestArticle" }) generates blog\my-test-article.

Consider the following IOutboundParameterTransformer implementation:

public class SlugifyParameterTransformer : IOutboundParameterTransformer
{
    public string? TransformOutbound(object? value)
    {
        if (value is null)
        {
            return null;
        }

        return Regex.Replace(
            value.ToString()!,
                "([a-z])([A-Z])",
            "$1-$2",
            RegexOptions.CultureInvariant,
            TimeSpan.FromMilliseconds(100))
            .ToLowerInvariant();
    }
}

To use a parameter transformer in a route pattern, configure it using ConstraintMap in Program.cs:

builder.Services.AddRouting(options =>
    options.ConstraintMap["slugify"] = typeof(SlugifyParameterTransformer));

The ASP.NET Core framework uses parameter transformers to transform the URI where an endpoint resolves. For example, parameter transformers transform the route values used to match an area, controller, action, and page:

app.MapControllerRoute(
    name: "default",
    pattern: "{controller:slugify=Home}/{action:slugify=Index}/{id?}");

With the preceding route template, the action SubscriptionManagementController.GetAll is matched with the URI /subscription-management/get-all. A parameter transformer doesn't change the route values used to generate a link. For example, Url.Action("GetAll", "SubscriptionManagement") outputs /subscription-management/get-all.

ASP.NET Core provides API conventions for using parameter transformers with generated routes:

URL generation reference

This section contains a reference for the algorithm implemented by URL generation. In practice, most complex examples of URL generation use controllers or Razor Pages. See routing in controllers for additional information.

The URL generation process begins with a call to LinkGenerator.GetPathByAddress or a similar method. The method is provided with an address, a set of route values, and optionally information about the current request from HttpContext.

The first step is to use the address to resolve a set of candidate endpoints using an IEndpointAddressScheme that matches the address's type.

Once the set of candidates is found by the address scheme, the endpoints are ordered and processed iteratively until a URL generation operation succeeds. URL generation does not check for ambiguities, the first result returned is the final result.

Troubleshooting URL generation with logging

The first step in troubleshooting URL generation is setting the logging level of Microsoft.AspNetCore.Routing to TRACE. LinkGenerator logs many details about its processing which can be useful to troubleshoot problems.

See URL generation reference for details on URL generation.

Addresses

Addresses are the concept in URL generation used to bind a call into the link generator to a set of candidate endpoints.

Addresses are an extensible concept that come with two implementations by default:

The role of the address scheme is to make the association between the address and matching endpoints by arbitrary criteria:

Ambient values and explicit values

From the current request, routing accesses the route values of the current request HttpContext.Request.RouteValues. The values associated with the current request are referred to as the ambient values. For the purpose of clarity, the documentation refers to the route values passed in to methods as explicit values.

The following example shows ambient values and explicit values. It provides ambient values from the current request and explicit values:

public class WidgetController : ControllerBase
{
    private readonly LinkGenerator _linkGenerator;

    public WidgetController(LinkGenerator linkGenerator) =>
        _linkGenerator = linkGenerator;

    public IActionResult Index()
    {
        var indexPath = _linkGenerator.GetPathByAction(
            HttpContext, values: new { id = 17 })!;

        return Content(indexPath);
    }

    // ...

The preceding code:

The following code provides only explicit values and no ambient values:

var subscribePath = _linkGenerator.GetPathByAction(
    "Subscribe", "Home", new { id = 17 })!;

The preceding method returns /Home/Subscribe/17

The following code in the WidgetController returns /Widget/Subscribe/17:

var subscribePath = _linkGenerator.GetPathByAction(
    HttpContext, "Subscribe", null, new { id = 17 });

The following code provides the controller from ambient values in the current request and explicit values:

public class GadgetController : ControllerBase
{
    public IActionResult Index() =>
        Content(Url.Action("Edit", new { id = 17 })!);
}

In the preceding code:

The following code provides ambient values from the current request and explicit values:

public class IndexModel : PageModel
{
    public void OnGet()
    {
        var editUrl = Url.Page("./Edit", new { id = 17 });

        // ...
    }
}

The preceding code sets url to /Edit/17 when the Edit Razor Page contains the following page directive:

@page "{id:int}"

If the Edit page doesn't contain the "{id:int}" route template, url is /Edit?id=17.

The behavior of MVC's IUrlHelper adds a layer of complexity in addition to the rules described here:

Users are often surprised by the behavioral details of ambient values, because MVC doesn't seem to follow its own rules. For historical and compatibility reasons, certain route values such as action, controller, page, and handler have their own special-case behavior.

The equivalent functionality provided by LinkGenerator.GetPathByAction and LinkGenerator.GetPathByPage duplicates these anomalies of IUrlHelper for compatibility.

URL generation process

Once the set of candidate endpoints are found, the URL generation algorithm:

The first step in this process is called route value invalidation. Route value invalidation is the process by which routing decides which route values from the ambient values should be used and which should be ignored. Each ambient value is considered and either combined with the explicit values, or ignored.

The best way to think about the role of ambient values is that they attempt to save application developers typing, in some common cases. Traditionally, the scenarios where ambient values are helpful are related to MVC:

Calls to LinkGenerator or IUrlHelper that return null are usually caused by not understanding route value invalidation. Troubleshoot route value invalidation by explicitly specifying more of the route values to see if that solves the problem.

Route value invalidation works on the assumption that the app's URL scheme is hierarchical, with a hierarchy formed from left-to-right. Consider the basic controller route template {controller}/{action}/{id?} to get an intuitive sense of how this works in practice. A change to a value invalidates all of the route values that appear to the right. This reflects the assumption about hierarchy. If the app has an ambient value for id, and the operation specifies a different value for the controller:

Some examples demonstrating this principle:

This process is further complicated by the existence of attribute routes and dedicated conventional routes. Controller conventional routes such as {controller}/{action}/{id?} specify a hierarchy using route parameters. For dedicated conventional routes and attribute routes to controllers and Razor Pages:

For these cases, URL generation defines the required values concept. Endpoints created by controllers and Razor Pages have required values specified that allow route value invalidation to work.

The route value invalidation algorithm in detail:

At this point, the URL generation operation is ready to evaluate route constraints. The set of accepted values is combined with the parameter default values, which is provided to constraints. If the constraints all pass, the operation continues.

Next, the accepted values can be used to expand the route template. The route template is processed:

Values explicitly provided that don't match a segment of the route are added to the query string. The following table shows the result when using the route template {controller}/{action}/{id?}.

Ambient Values Explicit Values Result
controller = "Home" action = "About" /Home/About
controller = "Home" controller = "Order", action = "About" /Order/About
controller = "Home", color = "Red" action = "About" /Home/About
controller = "Home" action = "About", color = "Red" /Home/About?color=Red

Optional route parameter order

Optional route parameters must come after all required route parameters and literals. In the following code, the id and name parameters must come after the color parameter:

using Microsoft.AspNetCore.Mvc;

namespace WebApplication1.Controllers;

[Route("api/[controller]")]
public class MyController : ControllerBase
{
    // GET /api/my/red/2/joe
    // GET /api/my/red/2
    // GET /api/my
    [HttpGet("{color}/{id:int?}/{name?}")]
    public IActionResult GetByIdAndOptionalName(string color, int id = 1, string? name = null)
    {
        return Ok($"{color} {id} {name ?? ""}");
    }
}

Problems with route value invalidation

The following code shows an example of a URL generation scheme that's not supported by routing:

app.MapControllerRoute(
    "default",
    "{culture}/{controller=Home}/{action=Index}/{id?}");

app.MapControllerRoute(
    "blog",
    "{culture}/{**slug}",
    new { controller = "Blog", action = "ReadPost" });

In the preceding code, the culture route parameter is used for localization. The desire is to have the culture parameter always accepted as an ambient value. However, the culture parameter is not accepted as an ambient value because of the way required values work:

Parse URL paths with LinkParser

The LinkParser class adds support for parsing a URL path into a set of route values. The ParsePathByEndpointName method takes an endpoint name and a URL path, and returns a set of route values extracted from the URL path.

In the following example controller, the GetProduct action uses a route template of api/Products/{id} and has a Name of GetProduct:

[ApiController]
[Route("api/[controller]")]
public class ProductsController : ControllerBase
{
    [HttpGet("{id}", Name = nameof(GetProduct))]
    public IActionResult GetProduct(string id)
    {
        // ...

In the same controller class, the AddRelatedProduct action expects a URL path, pathToRelatedProduct, which can be provided as a query-string parameter:

[HttpPost("{id}/Related")]
public IActionResult AddRelatedProduct(
    string id, string pathToRelatedProduct, [FromServices] LinkParser linkParser)
{
    var routeValues = linkParser.ParsePathByEndpointName(
        nameof(GetProduct), pathToRelatedProduct);
    var relatedProductId = routeValues?["id"];

    // ...

In the preceding example, the AddRelatedProduct action extracts the id route value from the URL path. For example, with a URL path of /api/Products/1, the relatedProductId value is set to 1. This approach allows the API's clients to use URL paths when referring to resources, without requiring knowledge of how such a URL is structured.

The following links provide information on how to configure endpoint metadata:

Host matching in routes with RequireHost

RequireHost applies a constraint to the route which requires the specified host. The RequireHost or [Host] parameter can be a:

Multiple parameters can be specified using RequireHost or [Host]. The constraint matches hosts valid for any of the parameters. For example, [Host("domain.com", "*.domain.com")] matches domain.com, www.domain.com, and subdomain.domain.com.

The following code uses RequireHost to require the specified host on the route:

app.MapGet("/", () => "Contoso").RequireHost("contoso.com");
app.MapGet("/", () => "AdventureWorks").RequireHost("adventure-works.com");

app.MapHealthChecks("/healthz").RequireHost("*:8080");

The following code uses the [Host] attribute on the controller to require any of the specified hosts:

[Host("contoso.com", "adventure-works.com")]
public class HostsController : Controller
{
    public IActionResult Index() =>
        View();

    [Host("example.com")]
    public IActionResult Example() =>
        View();
}

When the [Host] attribute is applied to both the controller and action method:

Route groups

The MapGroup extension method helps organize groups of endpoints with a common prefix. It reduces repetitive code and allows for customizing entire groups of endpoints with a single call to methods like RequireAuthorization and WithMetadata which add endpoint metadata.

For example, the following code creates two similar groups of endpoints:

app.MapGroup("/public/todos")
    .MapTodosApi()
    .WithTags("Public");

app.MapGroup("/private/todos")
    .MapTodosApi()
    .WithTags("Private")
    .AddEndpointFilterFactory(QueryPrivateTodos)
    .RequireAuthorization();


EndpointFilterDelegate QueryPrivateTodos(EndpointFilterFactoryContext factoryContext, EndpointFilterDelegate next)
{
    var dbContextIndex = -1;

    foreach (var argument in factoryContext.MethodInfo.GetParameters())
    {
        if (argument.ParameterType == typeof(TodoDb))
        {
            dbContextIndex = argument.Position;
            break;
        }
    }

    // Skip filter if the method doesn't have a TodoDb parameter.
    if (dbContextIndex < 0)
    {
        return next;
    }

    return async invocationContext =>
    {
        var dbContext = invocationContext.GetArgument<TodoDb>(dbContextIndex);
        dbContext.IsPrivate = true;

        try
        {
            return await next(invocationContext);
        }
        finally
        {
            // This should only be relevant if you're pooling or otherwise reusing the DbContext instance.
            dbContext.IsPrivate = false;
        }
    };
}
public static RouteGroupBuilder MapTodosApi(this RouteGroupBuilder group)
{
    group.MapGet("/", GetAllTodos);
    group.MapGet("/{id}", GetTodo);
    group.MapPost("/", CreateTodo);
    group.MapPut("/{id}", UpdateTodo);
    group.MapDelete("/{id}", DeleteTodo);

    return group;
}

In this scenario, you can use a relative address for the Location header in the 201 Created result:

public static async Task<Created<Todo>> CreateTodo(Todo todo, TodoDb database)
{
    await database.AddAsync(todo);
    await database.SaveChangesAsync();

    return TypedResults.Created($"{todo.Id}", todo);
}

The first group of endpoints will only match requests prefixed with /public/todos and are accessible without any authentication. The second group of endpoints will only match requests prefixed with /private/todos and require authentication.

The QueryPrivateTodos endpoint filter factory is a local function that modifies the route handler's TodoDb parameters to allow to access and store private todo data.

Route groups also support nested groups and complex prefix patterns with route parameters and constraints. In the following example, and route handler mapped to the user group can capture the {org} and {group} route parameters defined in the outer group prefixes.

The prefix can also be empty. This can be useful for adding endpoint metadata or filters to a group of endpoints without changing the route pattern.

var all = app.MapGroup("").WithOpenApi();
var org = all.MapGroup("{org}");
var user = org.MapGroup("{user}");
user.MapGet("", (string org, string user) => $"{org}/{user}");

Adding filters or metadata to a group behaves the same way as adding them individually to each endpoint before adding any extra filters or metadata that may have been added to an inner group or specific endpoint.

var outer = app.MapGroup("/outer");
var inner = outer.MapGroup("/inner");

inner.AddEndpointFilter((context, next) =>
{
    app.Logger.LogInformation("/inner group filter");
    return next(context);
});

outer.AddEndpointFilter((context, next) =>
{
    app.Logger.LogInformation("/outer group filter");
    return next(context);
});

inner.MapGet("/", () => "Hi!").AddEndpointFilter((context, next) =>
{
    app.Logger.LogInformation("MapGet filter");
    return next(context);
});

In the above example, the outer filter will log the incoming request before the inner filter even though it was added second. Because the filters were applied to different groups, the order they were added relative to each other does not matter. The order filters are added does matter if applied to the same group or specific endpoint.

A request to /outer/inner/ will log the following:

/outer group filter
/inner group filter
MapGet filter

Performance guidance for routing

When an app has performance problems, routing is often suspected as the problem. The reason routing is suspected is that frameworks like controllers and Razor Pages report the amount of time spent inside the framework in their logging messages. When there's a significant difference between the time reported by controllers and the total time of the request:

Routing is performance tested using thousands of endpoints. It's unlikely that a typical app will encounter a performance problem just by being too large. The most common root cause of slow routing performance is usually a badly-behaving custom middleware.

This following code sample demonstrates a basic technique for narrowing down the source of delay:

var logger = app.Services.GetRequiredService<ILogger<Program>>();

app.Use(async (context, next) =>
{
    var stopwatch = Stopwatch.StartNew();
    await next(context);
    stopwatch.Stop();

    logger.LogInformation("Time 1: {ElapsedMilliseconds}ms", stopwatch.ElapsedMilliseconds);
});

app.UseRouting();

app.Use(async (context, next) =>
{
    var stopwatch = Stopwatch.StartNew();
    await next(context);
    stopwatch.Stop();

    logger.LogInformation("Time 2: {ElapsedMilliseconds}ms", stopwatch.ElapsedMilliseconds);
});

app.UseAuthorization();

app.Use(async (context, next) =>
{
    var stopwatch = Stopwatch.StartNew();
    await next(context);
    stopwatch.Stop();

    logger.LogInformation("Time 3: {ElapsedMilliseconds}ms", stopwatch.ElapsedMilliseconds);
});

app.MapGet("/", () => "Timing Test.");

To time routing:

This is a basic way to narrow down the delay when it's significant, for example, more than 10ms. Subtracting Time 2 from Time 1 reports the time spent inside the UseRouting middleware.

The following code uses a more compact approach to the preceding timing code:

public sealed class AutoStopwatch : IDisposable
{
    private readonly ILogger _logger;
    private readonly string _message;
    private readonly Stopwatch _stopwatch;
    private bool _disposed;

    public AutoStopwatch(ILogger logger, string message) =>
        (_logger, _message, _stopwatch) = (logger, message, Stopwatch.StartNew());

    public void Dispose()
    {
        if (_disposed)
        {
            return;
        }

        _logger.LogInformation("{Message}: {ElapsedMilliseconds}ms",
            _message, _stopwatch.ElapsedMilliseconds);

        _disposed = true;
    }
}
var logger = app.Services.GetRequiredService<ILogger<Program>>();
var timerCount = 0;

app.Use(async (context, next) =>
{
    using (new AutoStopwatch(logger, $"Time {++timerCount}"))
    {
        await next(context);
    }
});

app.UseRouting();

app.Use(async (context, next) =>
{
    using (new AutoStopwatch(logger, $"Time {++timerCount}"))
    {
        await next(context);
    }
});

app.UseAuthorization();

app.Use(async (context, next) =>
{
    using (new AutoStopwatch(logger, $"Time {++timerCount}"))
    {
        await next(context);
    }
});

app.MapGet("/", () => "Timing Test.");

Potentially expensive routing features

The following list provides some insight into routing features that are relatively expensive compared with basic route templates:

Guidance for large route tables

By default ASP.NET Core uses a routing algorithm that trades memory for CPU time. This has the nice effect that route matching time is dependent only on the length of the path to match and not the number of routes. However, this approach can be potentially problematic in some cases, when the app has a large number of routes (in the thousands) and there is a high amount of variable prefixes in the routes. For example, if the routes have parameters in early segments of the route, like {parameter}/some/literal.

It is unlikely for an app to run into a situation where this is a problem unless:

How to determine if an app is running into the large route table problem

How to address this issue

There are several techniques and optimizations that can be applied to routes that largely improve this scenario:

Short-circuit middleware after routing

When routing matches an endpoint, it typically lets the rest of the middleware pipeline run before invoking the endpoint logic. Services can reduce resource usage by filtering out known requests early in the pipeline. Use the ShortCircuit extension method to cause routing to invoke the endpoint logic immediately and then end the request. For example, a given route might not need to go through authentication or CORS middleware. The following example short-circuits requests that match the /short-circuit route:

app.MapGet("/short-circuit", () => "Short circuiting!").ShortCircuit();

The ShortCircuit(IEndpointConventionBuilder, Nullable) method can optionally take a status code.

Use the MapShortCircuit method to set up short-circuiting for multiple routes at once, by passing to it a params array of URL prefixes. For example, browsers and bots often probe servers for well known paths like robots.txt and favicon.ico. If the app doesn't have those files, one line of code can configure both routes:

app.MapShortCircuit(404, "robots.txt", "favicon.ico");

MapShortCircuit returns IEndpointConventionBuilder so that additional route constraints like host filtering can be added to it.

The ShortCircuit and MapShortCircuit methods do not affect middleware placed before UseRouting. Trying to use these methods with endpoints that also have [Authorize] or [RequireCors] metadata will cause requests to fail with an InvalidOperationException. This metadata is applied by [Authorize] or [EnableCors] attributes or by RequireCors or RequireAuthorization methods.

To see the effect of short-circuiting middleware, set the "Microsoft" logging category to "Information" in appsettings.Development.json:

{
  "Logging": {
    "LogLevel": {
      "Default": "Information",
      "Microsoft": "Information",
      "Microsoft.Hosting.Lifetime": "Information"
    }
  }
}

Run the following code:

var app = WebApplication.Create();

app.UseHttpLogging();

app.MapGet("/", () => "No short-circuiting!");
app.MapGet("/short-circuit", () => "Short circuiting!").ShortCircuit();
app.MapShortCircuit(404, "robots.txt", "favicon.ico");

app.Run();

The following example is from the console logs produced by running the / endpoint. It includes output from the logging middleware:

info: Microsoft.AspNetCore.Routing.EndpointMiddleware[0]
      Executing endpoint 'HTTP: GET /'
info: Microsoft.AspNetCore.Routing.EndpointMiddleware[1]
      Executed endpoint 'HTTP: GET /'
info: Microsoft.AspNetCore.HttpLogging.HttpLoggingMiddleware[2]
      Response:
      StatusCode: 200
      Content-Type: text/plain; charset=utf-8
      Date: Wed, 03 May 2023 21:05:59 GMT
      Server: Kestrel
      Alt-Svc: h3=":5182"; ma=86400
      Transfer-Encoding: chunked

The following example is from running the /short-circuit endpoint. It doesn't have anything from the logging middleware because the middleware was short-circuited:

info: Microsoft.AspNetCore.Routing.EndpointRoutingMiddleware[4]
      The endpoint 'HTTP: GET /short-circuit' is being executed without running additional middleware.
info: Microsoft.AspNetCore.Routing.EndpointRoutingMiddleware[5]
      The endpoint 'HTTP: GET /short-circuit' has been executed without running additional middleware.

This section contains guidance for library authors building on top of routing. These details are intended to ensure that app developers have a good experience using libraries and frameworks that extend routing.

Define endpoints

To create a framework that uses routing for URL matching, start by defining a user experience that builds on top of UseEndpoints.

DO build on top of IEndpointRouteBuilder. This allows users to compose your framework with other ASP.NET Core features without confusion. Every ASP.NET Core template includes routing. Assume routing is present and familiar for users.

// Your framework
app.MapMyFramework(...);

app.MapHealthChecks("/healthz");

DO return a sealed concrete type from a call to MapMyFramework(...) that implements IEndpointConventionBuilder. Most framework Map... methods follow this pattern. The IEndpointConventionBuilder interface:

Declaring your own type allows you to add your own framework-specific functionality to the builder. It's ok to wrap a framework-declared builder and forward calls to it.

// Your framework
app.MapMyFramework(...)
    .RequireAuthorization()
    .WithMyFrameworkFeature(awesome: true);

app.MapHealthChecks("/healthz");

CONSIDER writing your own EndpointDataSource. EndpointDataSource is the low-level primitive for declaring and updating a collection of endpoints. EndpointDataSource is a powerful API used by controllers and Razor Pages. For more information, see Dynamic endpoint routing.

The routing tests have a basic example of a non-updating data source.

CONSIDER implementing GetGroupedEndpoints. This gives complete control over running group conventions and the final metadata on the grouped endpoints. For example, this allows custom EndpointDataSource implementations to run endpoint filters added to groups.

DO NOT attempt to register an EndpointDataSource by default. Require users to register your framework in UseEndpoints. The philosophy of routing is that nothing is included by default, and that UseEndpoints is the place to register endpoints.

Creating routing-integrated middleware

CONSIDER defining metadata types as an interface.

DO make it possible to use metadata types as an attribute on classes and methods.

public interface ICoolMetadata
{
    bool IsCool { get; }
}

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Method)]
public class CoolMetadataAttribute : Attribute, ICoolMetadata
{
    public bool IsCool => true;
}

Frameworks like controllers and Razor Pages support applying metadata attributes to types and methods. If you declare metadata types:

Declaring a metadata type as an interface adds another layer of flexibility:

DO make it possible to override metadata, as shown in the following example:

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Method)]
public class SuppressCoolMetadataAttribute : Attribute, ICoolMetadata
{
    public bool IsCool => false;
}

[CoolMetadata]
public class MyController : Controller
{
    public void MyCool() { }

    [SuppressCoolMetadata]
    public void Uncool() { }
}

The best way to follow these guidelines is to avoid defining marker metadata:

The metadata collection is ordered and supports overriding by priority. In the case of controllers, metadata on the action method is most specific.

DO make middleware useful with and without routing:

app.UseAuthorization(new AuthorizationPolicy() { ... });

// Your framework
app.MapMyFramework(...).RequireAuthorization();

As an example of this guideline, consider the UseAuthorization middleware. The authorization middleware allows you to pass in a fallback policy. The fallback policy, if specified, applies to both:

This makes the authorization middleware useful outside of the context of routing. The authorization middleware can be used for traditional middleware programming.

Debug diagnostics

For detailed routing diagnostic output, set Logging:LogLevel:Microsoft to Debug. In the development environment, set the log level in appsettings.Development.json:

{
  "Logging": {
    "LogLevel": {
      "Default": "Information",
      "Microsoft": "Debug",
      "Microsoft.Hosting.Lifetime": "Information"
    }
  }
}

Additional resources

Routing is responsible for matching incoming HTTP requests and dispatching those requests to the app's executable endpoints. Endpoints are the app's units of executable request-handling code. Endpoints are defined in the app and configured when the app starts. The endpoint matching process can extract values from the request's URL and provide those values for request processing. Using endpoint information from the app, routing is also able to generate URLs that map to endpoints.

Apps can configure routing using:

This article covers low-level details of ASP.NET Core routing. For information on configuring routing:

Routing basics

The following code shows a basic example of routing:

var builder = WebApplication.CreateBuilder(args);
var app = builder.Build();

app.MapGet("/", () => "Hello World!");

app.Run();

The preceding example includes a single endpoint using the MapGet method:

Routing uses a pair of middleware, registered by UseRouting and UseEndpoints:

Apps typically don't need to call UseRouting or UseEndpoints. WebApplicationBuilder configures a middleware pipeline that wraps middleware added in Program.cs with UseRouting and UseEndpoints. However, apps can change the order in which UseRouting and UseEndpoints run by calling these methods explicitly. For example, the following code makes an explicit call to UseRouting:

app.Use(async (context, next) =>
{
    // ...
    await next(context);
});

app.UseRouting();

app.MapGet("/", () => "Hello World!");

In the preceding code:

If the preceding example didn't include a call to UseRouting, the custom middleware would run after the route matching middleware.

Endpoints

The MapGet method is used to define an endpoint. An endpoint is something that can be:

Endpoints that can be matched and executed by the app are configured in UseEndpoints. For example, MapGet, MapPost, and similar methods connect request delegates to the routing system. Additional methods can be used to connect ASP.NET Core framework features to the routing system:

The following example shows routing with a more sophisticated route template:

app.MapGet("/hello/{name:alpha}", (string name) => $"Hello {name}!");

The string /hello/{name:alpha} is a route template. A route template is used to configure how the endpoint is matched. In this case, the template matches:

The second segment of the URL path, {name:alpha}:

The following example shows routing with health checks and authorization:

app.UseAuthentication();
app.UseAuthorization();

app.MapHealthChecks("/healthz").RequireAuthorization();
app.MapGet("/", () => "Hello World!");

The preceding example demonstrates how:

The MapHealthChecks call adds a health check endpoint. Chaining RequireAuthorization on to this call attaches an authorization policy to the endpoint.

Calling UseAuthentication and UseAuthorization adds the authentication and authorization middleware. These middleware are placed between UseRouting and UseEndpoints so that they can:

Endpoint metadata

In the preceding example, there are two endpoints, but only the health check endpoint has an authorization policy attached. If the request matches the health check endpoint, /healthz, an authorization check is performed. This demonstrates that endpoints can have extra data attached to them. This extra data is called endpoint metadata:

Routing concepts

The routing system builds on top of the middleware pipeline by adding the powerful endpoint concept. Endpoints represent units of the app's functionality that are distinct from each other in terms of routing, authorization, and any number of ASP.NET Core's systems.

ASP.NET Core endpoint definition

An ASP.NET Core endpoint is:

The following code shows how to retrieve and inspect the endpoint matching the current request:

app.Use(async (context, next) =>
{
    var currentEndpoint = context.GetEndpoint();

    if (currentEndpoint is null)
    {
        await next(context);
        return;
    }

    Console.WriteLine($"Endpoint: {currentEndpoint.DisplayName}");

    if (currentEndpoint is RouteEndpoint routeEndpoint)
    {
        Console.WriteLine($"  - Route Pattern: {routeEndpoint.RoutePattern}");
    }

    foreach (var endpointMetadata in currentEndpoint.Metadata)
    {
        Console.WriteLine($"  - Metadata: {endpointMetadata}");
    }

    await next(context);
});

app.MapGet("/", () => "Inspect Endpoint.");

The endpoint, if selected, can be retrieved from the HttpContext. Its properties can be inspected. Endpoint objects are immutable and cannot be modified after creation. The most common type of endpoint is a RouteEndpoint. RouteEndpoint includes information that allows it to be selected by the routing system.

In the preceding code, app.Use configures an inline middleware.

The following code shows that, depending on where app.Use is called in the pipeline, there may not be an endpoint:

// Location 1: before routing runs, endpoint is always null here.
app.Use(async (context, next) =>
{
    Console.WriteLine($"1. Endpoint: {context.GetEndpoint()?.DisplayName ?? "(null)"}");
    await next(context);
});

app.UseRouting();

// Location 2: after routing runs, endpoint will be non-null if routing found a match.
app.Use(async (context, next) =>
{
    Console.WriteLine($"2. Endpoint: {context.GetEndpoint()?.DisplayName ?? "(null)"}");
    await next(context);
});

// Location 3: runs when this endpoint matches
app.MapGet("/", (HttpContext context) =>
{
    Console.WriteLine($"3. Endpoint: {context.GetEndpoint()?.DisplayName ?? "(null)"}");
    return "Hello World!";
}).WithDisplayName("Hello");

app.UseEndpoints(_ => { });

// Location 4: runs after UseEndpoints - will only run if there was no match.
app.Use(async (context, next) =>
{
    Console.WriteLine($"4. Endpoint: {context.GetEndpoint()?.DisplayName ?? "(null)"}");
    await next(context);
});

The preceding sample adds Console.WriteLine statements that display whether or not an endpoint has been selected. For clarity, the sample assigns a display name to the provided / endpoint.

The preceding sample also includes calls to UseRouting and UseEndpoints to control exactly when these middleware run within the pipeline.

Running this code with a URL of / displays:

1. Endpoint: (null)
2. Endpoint: Hello
3. Endpoint: Hello

Running this code with any other URL displays:

1. Endpoint: (null)
2. Endpoint: (null)
4. Endpoint: (null)

This output demonstrates that:

The UseRouting middleware uses the SetEndpoint method to attach the endpoint to the current context. It's possible to replace the UseRouting middleware with custom logic and still get the benefits of using endpoints. Endpoints are a low-level primitive like middleware, and aren't coupled to the routing implementation. Most apps don't need to replace UseRouting with custom logic.

The UseEndpoints middleware is designed to be used in tandem with the UseRouting middleware. The core logic to execute an endpoint isn't complicated. Use GetEndpoint to retrieve the endpoint, and then invoke its RequestDelegate property.

The following code demonstrates how middleware can influence or react to routing:

app.UseHttpMethodOverride();
app.UseRouting();

app.Use(async (context, next) =>
{
    if (context.GetEndpoint()?.Metadata.GetMetadata<RequiresAuditAttribute>() is not null)
    {
        Console.WriteLine($"ACCESS TO SENSITIVE DATA AT: {DateTime.UtcNow}");
    }

    await next(context);
});

app.MapGet("/", () => "Audit isn't required.");
app.MapGet("/sensitive", () => "Audit required for sensitive data.")
    .WithMetadata(new RequiresAuditAttribute());
public class RequiresAuditAttribute : Attribute { }

The preceding example demonstrates two important concepts:

The preceding code shows an example of a custom middleware that supports per-endpoint policies. The middleware writes an audit log of access to sensitive data to the console. The middleware can be configured to audit an endpoint with the RequiresAuditAttribute metadata. This sample demonstrates an opt-in pattern where only endpoints that are marked as sensitive are audited. It's possible to define this logic in reverse, auditing everything that isn't marked as safe, for example. The endpoint metadata system is flexible. This logic could be designed in whatever way suits the use case.

The preceding sample code is intended to demonstrate the basic concepts of endpoints. The sample is not intended for production use. A more complete version of an audit log middleware would:

The audit policy metadata RequiresAuditAttribute is defined as an Attribute for easier use with class-based frameworks such as controllers and SignalR. When using route to code:

The best practices for metadata types are to define them either as interfaces or attributes. Interfaces and attributes allow code reuse. The metadata system is flexible and doesn't impose any limitations.

Compare terminal middleware with routing

The following example demonstrates both terminal middleware and routing:

// Approach 1: Terminal Middleware.
app.Use(async (context, next) =>
{
    if (context.Request.Path == "/")
    {
        await context.Response.WriteAsync("Terminal Middleware.");
        return;
    }

    await next(context);
});

app.UseRouting();

// Approach 2: Routing.
app.MapGet("/Routing", () => "Routing.");

The style of middleware shown with Approach 1: is terminal middleware. It's called terminal middleware because it does a matching operation:

It's called terminal middleware because it terminates the search, executes some functionality, and then returns.

The following list compares terminal middleware with routing:

An endpoint defines both:

Terminal middleware can be an effective tool, but can require:

Consider integrating with routing before writing a terminal middleware.

Existing terminal middleware that integrates with Map or MapWhen can usually be turned into a routing aware endpoint. MapHealthChecks demonstrates the pattern for router-ware:

The following code shows use of MapHealthChecks:

app.UseAuthentication();
app.UseAuthorization();

app.MapHealthChecks("/healthz").RequireAuthorization();

The preceding sample shows why returning the builder object is important. Returning the builder object allows the app developer to configure policies such as authorization for the endpoint. In this example, the health checks middleware has no direct integration with the authorization system.

The metadata system was created in response to the problems encountered by extensibility authors using terminal middleware. It's problematic for each middleware to implement its own integration with the authorization system.

URL matching

When a routing middleware executes, it sets an Endpoint and route values to a request feature on the HttpContext from the current request:

Middleware runs after the routing middleware can inspect the endpoint and take action. For example, an authorization middleware can interrogate the endpoint's metadata collection for an authorization policy. After all of the middleware in the request processing pipeline is executed, the selected endpoint's delegate is invoked.

The routing system in endpoint routing is responsible for all dispatching decisions. Because the middleware applies policies based on the selected endpoint, it's important that:

Warning

For backward-compatibility, when a Controller or Razor Pages endpoint delegate is executed, the properties of RouteContext.RouteData are set to appropriate values based on the request processing performed thus far.

The RouteContext type will be marked obsolete in a future release:

URL matching operates in a configurable set of phases. In each phase, the output is a set of matches. The set of matches can be narrowed down further by the next phase. The routing implementation does not guarantee a processing order for matching endpoints. All possible matches are processed at once. The URL matching phases occur in the following order. ASP.NET Core:

  1. Processes the URL path against the set of endpoints and their route templates, collecting all of the matches.
  2. Takes the preceding list and removes matches that fail with route constraints applied.
  3. Takes the preceding list and removes matches that fail the set of MatcherPolicy instances.
  4. Uses the EndpointSelector to make a final decision from the preceding list.

The list of endpoints is prioritized according to:

All matching endpoints are processed in each phase until the EndpointSelector is reached. The EndpointSelector is the final phase. It chooses the highest priority endpoint from the matches as the best match. If there are other matches with the same priority as the best match, an ambiguous match exception is thrown.

The route precedence is computed based on a more specific route template being given a higher priority. For example, consider the templates /hello and /{message}:

In general, route precedence does a good job of choosing the best match for the kinds of URL schemes used in practice. Use Order only when necessary to avoid an ambiguity.

Due to the kinds of extensibility provided by routing, it isn't possible for the routing system to compute ahead of time the ambiguous routes. Consider an example such as the route templates /{message:alpha} and /{message:int}:

Warning

The order of operations inside UseEndpoints doesn't influence the behavior of routing, with one exception. MapControllerRoute and MapAreaRoute automatically assign an order value to their endpoints based on the order they are invoked. This simulates long-time behavior of controllers without the routing system providing the same guarantees as older routing implementations.

Endpoint routing in ASP.NET Core:

Route template precedence and endpoint selection order

Route template precedence is a system that assigns each route template a value based on how specific it is. Route template precedence:

For example, consider templates /Products/List and /Products/{id}. It would be reasonable to assume that /Products/List is a better match than /Products/{id} for the URL path /Products/List. This works because the literal segment /List is considered to have better precedence than the parameter segment /{id}.

The details of how precedence works are coupled to how route templates are defined:

URL generation concepts

URL generation:

Endpoint routing includes the LinkGenerator API. LinkGenerator is a singleton service available from DI. The LinkGenerator API can be used outside of the context of an executing request. Mvc.IUrlHelper and scenarios that rely on IUrlHelper, such as Tag Helpers, HTML Helpers, and Action Results, use the LinkGenerator API internally to provide link generating capabilities.

The link generator is backed by the concept of an address and address schemes. An address scheme is a way of determining the endpoints that should be considered for link generation. For example, the route name and route values scenarios many users are familiar with from controllers and Razor Pages are implemented as an address scheme.

The link generator can link to controllers and Razor Pages via the following extension methods:

Overloads of these methods accept arguments that include the HttpContext. These methods are functionally equivalent to Url.Action and Url.Page, but offer additional flexibility and options.

The GetPath* methods are most similar to Url.Action and Url.Page, in that they generate a URI containing an absolute path. The GetUri* methods always generate an absolute URI containing a scheme and host. The methods that accept an HttpContext generate a URI in the context of the executing request. The ambient route values, URL base path, scheme, and host from the executing request are used unless overridden.

LinkGenerator is called with an address. Generating a URI occurs in two steps:

  1. An address is bound to a list of endpoints that match the address.
  2. Each endpoint's RoutePattern is evaluated until a route pattern that matches the supplied values is found. The resulting output is combined with the other URI parts supplied to the link generator and returned.

The methods provided by LinkGenerator support standard link generation capabilities for any type of address. The most convenient way to use the link generator is through extension methods that perform operations for a specific address type:

Extension Method Description
GetPathByAddress Generates a URI with an absolute path based on the provided values.
GetUriByAddress Generates an absolute URI based on the provided values.

Warning

Pay attention to the following implications of calling LinkGenerator methods:

Middleware example

In the following example, a middleware uses the LinkGenerator API to create a link to an action method that lists store products. Using the link generator by injecting it into a class and calling GenerateLink is available to any class in an app:

public class ProductsMiddleware
{
    private readonly LinkGenerator _linkGenerator;

    public ProductsMiddleware(RequestDelegate next, LinkGenerator linkGenerator) =>
        _linkGenerator = linkGenerator;

    public async Task InvokeAsync(HttpContext httpContext)
    {
        httpContext.Response.ContentType = MediaTypeNames.Text.Plain;

        var productsPath = _linkGenerator.GetPathByAction("Products", "Store");

        await httpContext.Response.WriteAsync(
            $"Go to {productsPath} to see our products.");
    }
}

Route templates

Tokens within {} define route parameters that are bound if the route is matched. More than one route parameter can be defined in a route segment, but route parameters must be separated by a literal value. For example:

{controller=Home}{action=Index}

isn't a valid route, because there's no literal value between {controller} and {action}. Route parameters must have a name and may have additional attributes specified.

Literal text other than route parameters (for example, {id}) and the path separator / must match the text in the URL. Text matching is case-insensitive and based on the decoded representation of the URL's path. To match a literal route parameter delimiter { or }, escape the delimiter by repeating the character. For example {{ or }}.

Asterisk * or double asterisk **:

Warning

A catch-all parameter may match routes incorrectly due to a bug in routing. Apps impacted by this bug have the following characteristics:

See GitHub bugs 18677 and 16579 for example cases that hit this bug.

An opt-in fix for this bug is contained in .NET Core 3.1.301 or later SDK. The following code sets an internal switch that fixes this bug:

public static void Main(string[] args)
{
   AppContext.SetSwitch("Microsoft.AspNetCore.Routing.UseCorrectCatchAllBehavior", 
                         true);
   CreateHostBuilder(args).Build().Run();
}
// Remaining code removed for brevity.

Catch-all parameters can also match the empty string.

The catch-all parameter escapes the appropriate characters when the route is used to generate a URL, including path separator / characters. For example, the route foo/{*path} with route values { path = "my/path" } generates foo/my%2Fpath. Note the escaped forward slash. To round-trip path separator characters, use the ** route parameter prefix. The route foo/{**path} with { path = "my/path" } generates foo/my/path.

URL patterns that attempt to capture a file name with an optional file extension have additional considerations. For example, consider the template files/{filename}.{ext?}. When values for both filename and ext exist, both values are populated. If only a value for filename exists in the URL, the route matches because the trailing . is optional. The following URLs match this route:

Route parameters may have default values designated by specifying the default value after the parameter name separated by an equals sign (=). For example, {controller=Home} defines Home as the default value for controller. The default value is used if no value is present in the URL for the parameter. Route parameters are made optional by appending a question mark (?) to the end of the parameter name. For example, id?. The difference between optional values and default route parameters is:

Route parameters may have constraints that must match the route value bound from the URL. Adding : and constraint name after the route parameter name specifies an inline constraint on a route parameter. If the constraint requires arguments, they're enclosed in parentheses (...) after the constraint name. Multiple inline constraints can be specified by appending another : and constraint name.

The constraint name and arguments are passed to the IInlineConstraintResolver service to create an instance of IRouteConstraint to use in URL processing. For example, the route template blog/{article:minlength(10)} specifies a minlength constraint with the argument 10. For more information on route constraints and a list of the constraints provided by the framework, see the Route constraints section.

Route parameters may also have parameter transformers. Parameter transformers transform a parameter's value when generating links and matching actions and pages to URLs. Like constraints, parameter transformers can be added inline to a route parameter by adding a : and transformer name after the route parameter name. For example, the route template blog/{article:slugify} specifies a slugify transformer. For more information on parameter transformers, see the Parameter transformers section.

The following table demonstrates example route templates and their behavior:

Route Template Example Matching URI The request URI…
hello /hello Only matches the single path /hello.
{Page=Home} / Matches and sets Page to Home.
{Page=Home} /Contact Matches and sets Page to Contact.
{controller}/{action}/{id?} /Products/List Maps to the Products controller and List action.
{controller}/{action}/{id?} /Products/Details/123 Maps to the Products controller and Details action withid set to 123.
{controller=Home}/{action=Index}/{id?} / Maps to the Home controller and Index method. id is ignored.
{controller=Home}/{action=Index}/{id?} /Products Maps to the Products controller and Index method. id is ignored.

Using a template is generally the simplest approach to routing. Constraints and defaults can also be specified outside the route template.

Complex segments

Complex segments are processed by matching up literal delimiters from right to left in a non-greedy way. For example, [Route("/a{b}c{d}")] is a complex segment. Complex segments work in a particular way that must be understood to use them successfully. The example in this section demonstrates why complex segments only really work well when the delimiter text doesn't appear inside the parameter values. Using a regex and then manually extracting the values is needed for more complex cases.

This is a summary of the steps that routing performs with the template /a{b}c{d} and the URL path /abcd. The | is used to help visualize how the algorithm works:

Here's an example of a negative case using the same template /a{b}c{d} and the URL path /aabcd. The | is used to help visualize how the algorithm works. This case isn't a match, which is explained by the same algorithm:

Since the matching algorithm is non-greedy:

Regular expressions provide much more control over their matching behavior.

Greedy matching, also known as lazy matching, matches the largest possible string. Non-greedy matches the smallest possible string.

Routing with special characters

Routing with special characters can lead to unexpected results. For example, consider a controller with the following action method:

[HttpGet("{id?}/name")]
public async Task<ActionResult<string>> GetName(string id)
{
    var todoItem = await _context.TodoItems.FindAsync(id);

    if (todoItem == null || todoItem.Name == null)
    {
        return NotFound();
    }

    return todoItem.Name;
}

When string id contains the following encoded values, unexpected results might occur:

ASCII Encoded
/ %2F
+

Route parameters are not always URL decoded. This problem may be addressed in the future. For more information, see this GitHub issue;

Route constraints

Route constraints execute when a match has occurred to the incoming URL and the URL path is tokenized into route values. Route constraints generally inspect the route value associated via the route template and make a true or false decision about whether the value is acceptable. Some route constraints use data outside the route value to consider whether the request can be routed. For example, the HttpMethodRouteConstraint can accept or reject a request based on its HTTP verb. Constraints are used in routing requests and link generation.

Warning

Don't use constraints for input validation. If constraints are used for input validation, invalid input results in a 404 Not Found response. Invalid input should produce a 400 Bad Request with an appropriate error message. Route constraints are used to disambiguate similar routes, not to validate the inputs for a particular route.

The following table demonstrates example route constraints and their expected behavior:

constraint Example Example Matches Notes
int {id:int} 123456789, -123456789 Matches any integer
bool {active:bool} true, FALSE Matches true or false. Case-insensitive
datetime {dob:datetime} 2016-12-31, 2016-12-31 7:32pm Matches a valid DateTime value in the invariant culture. See preceding warning.
decimal {price:decimal} 49.99, -1,000.01 Matches a valid decimal value in the invariant culture. See preceding warning.
double {weight:double} 1.234, -1,001.01e8 Matches a valid double value in the invariant culture. See preceding warning.
float {weight:float} 1.234, -1,001.01e8 Matches a valid float value in the invariant culture. See preceding warning.
guid {id:guid} CD2C1638-1638-72D5-1638-DEADBEEF1638 Matches a valid Guid value
long {ticks:long} 123456789, -123456789 Matches a valid long value
minlength(value) {username:minlength(4)} Rick String must be at least 4 characters
maxlength(value) {filename:maxlength(8)} MyFile String must be no more than 8 characters
length(length) {filename:length(12)} somefile.txt String must be exactly 12 characters long
length(min,max) {filename:length(8,16)} somefile.txt String must be at least 8 and no more than 16 characters long
min(value) {age:min(18)} 19 Integer value must be at least 18
max(value) {age:max(120)} 91 Integer value must be no more than 120
range(min,max) {age:range(18,120)} 91 Integer value must be at least 18 but no more than 120
alpha {name:alpha} Rick String must consist of one or more alphabetical characters, a-z and case-insensitive.
regex(expression) {ssn:regex(^\\d{{3}}-\\d{{2}}-\\d{{4}}$)} 123-45-6789 String must match the regular expression. See tips about defining a regular expression.
required {name:required} Rick Used to enforce that a non-parameter value is present during URL generation

Multiple, colon delimited constraints can be applied to a single parameter. For example, the following constraint restricts a parameter to an integer value of 1 or greater:

[Route("users/{id:int:min(1)}")]
public User GetUserById(int id) { }

Warning

Route constraints that verify the URL and are converted to a CLR type always use the invariant culture. For example, conversion to the CLR type int or DateTime. These constraints assume that the URL is not localizable. The framework-provided route constraints don't modify the values stored in route values. All route values parsed from the URL are stored as strings. For example, the float constraint attempts to convert the route value to a float, but the converted value is used only to verify it can be converted to a float.

Regular expressions in constraints

Regular expressions can be specified as inline constraints using the regex(...) route constraint. Methods in the MapControllerRoute family also accept an object literal of constraints. If that form is used, string values are interpreted as regular expressions.

The following code uses an inline regex constraint:

app.MapGet("{message:regex(^\\d{{3}}-\\d{{2}}-\\d{{4}}$)}",
    () => "Inline Regex Constraint Matched");

The following code uses an object literal to specify a regex constraint:

app.MapControllerRoute(
    name: "people",
    pattern: "people/{ssn}",
    constraints: new { ssn = "^\\d{3}-\\d{2}-\\d{4}$", },
    defaults: new { controller = "People", action = "List" });

The ASP.NET Core framework adds RegexOptions.IgnoreCase | RegexOptions.Compiled | RegexOptions.CultureInvariant to the regular expression constructor. See RegexOptions for a description of these members.

Regular expressions use delimiters and tokens similar to those used by routing and the C# language. Regular expression tokens must be escaped. To use the regular expression ^\d{3}-\d{2}-\d{4}$ in an inline constraint, use one of the following:

To escape routing parameter delimiter characters {, }, [, ], double the characters in the expression, for example, {{, }}, [[, ]]. The following table shows a regular expression and its escaped version:

Regular expression Escaped regular expression
^\d{3}-\d{2}-\d{4}$ ^\\d{{3}}-\\d{{2}}-\\d{{4}}$
^[a-z]{2}$ ^[[a-z]]{{2}}$

Regular expressions used in routing often start with the ^ character and match the starting position of the string. The expressions often end with the $ character and match the end of the string. The ^ and $ characters ensure that the regular expression matches the entire route parameter value. Without the ^ and $ characters, the regular expression matches any substring within the string, which is often undesirable. The following table provides examples and explains why they match or fail to match:

Expression String Match Comment
[a-z]{2} hello Yes Substring matches
[a-z]{2} 123abc456 Yes Substring matches
[a-z]{2} mz Yes Matches expression
[a-z]{2} MZ Yes Not case sensitive
^[a-z]{2}$ hello No See ^ and $ above
^[a-z]{2}$ 123abc456 No See ^ and $ above

For more information on regular expression syntax, see .NET Framework Regular Expressions.

To constrain a parameter to a known set of possible values, use a regular expression. For example, {action:regex(^(list|get|create)$)} only matches the action route value to list, get, or create. If passed into the constraints dictionary, the string ^(list|get|create)$ is equivalent. Constraints that are passed in the constraints dictionary that don't match one of the known constraints are also treated as regular expressions. Constraints that are passed within a template that don't match one of the known constraints are not treated as regular expressions.

Custom route constraints

Custom route constraints can be created by implementing the IRouteConstraint interface. The IRouteConstraint interface contains Match, which returns true if the constraint is satisfied and false otherwise.

Custom route constraints are rarely needed. Before implementing a custom route constraint, consider alternatives, such as model binding.

The ASP.NET Core Constraints folder provides good examples of creating constraints. For example, GuidRouteConstraint.

To use a custom IRouteConstraint, the route constraint type must be registered with the app's ConstraintMap in the service container. A ConstraintMap is a dictionary that maps route constraint keys to IRouteConstraint implementations that validate those constraints. An app's ConstraintMap can be updated in Program.cs either as part of an AddRouting call or by configuring RouteOptions directly with builder.Services.Configure<RouteOptions>. For example:

builder.Services.AddRouting(options =>
    options.ConstraintMap.Add("noZeroes", typeof(NoZeroesRouteConstraint)));

The preceding constraint is applied in the following code:

[ApiController]
[Route("api/[controller]")]
public class NoZeroesController : ControllerBase
{
    [HttpGet("{id:noZeroes}")]
    public IActionResult Get(string id) =>
        Content(id);
}

The implementation of NoZeroesRouteConstraint prevents 0 being used in a route parameter:

public class NoZeroesRouteConstraint : IRouteConstraint
{
    private static readonly Regex _regex = new(
        @"^[1-9]*$",
        RegexOptions.CultureInvariant | RegexOptions.IgnoreCase,
        TimeSpan.FromMilliseconds(100));

    public bool Match(
        HttpContext? httpContext, IRouter? route, string routeKey,
        RouteValueDictionary values, RouteDirection routeDirection)
    {
        if (!values.TryGetValue(routeKey, out var routeValue))
        {
            return false;
        }

        var routeValueString = Convert.ToString(routeValue, CultureInfo.InvariantCulture);

        if (routeValueString is null)
        {
            return false;
        }

        return _regex.IsMatch(routeValueString);
    }
}

The preceding code:

The following code is a better approach to preventing an id containing a 0 from being processed:

[HttpGet("{id}")]
public IActionResult Get(string id)
{
    if (id.Contains('0'))
    {
        return StatusCode(StatusCodes.Status406NotAcceptable);
    }

    return Content(id);
}

The preceding code has the following advantages over the NoZeroesRouteConstraint approach:

Parameter transformers

Parameter transformers:

For example, a custom slugify parameter transformer in route pattern blog\{article:slugify} with Url.Action(new { article = "MyTestArticle" }) generates blog\my-test-article.

Consider the following IOutboundParameterTransformer implementation:

public class SlugifyParameterTransformer : IOutboundParameterTransformer
{
    public string? TransformOutbound(object? value)
    {
        if (value is null)
        {
            return null;
        }

        return Regex.Replace(
            value.ToString()!,
                "([a-z])([A-Z])",
            "$1-$2",
            RegexOptions.CultureInvariant,
            TimeSpan.FromMilliseconds(100))
            .ToLowerInvariant();
    }
}

To use a parameter transformer in a route pattern, configure it using ConstraintMap in Program.cs:

builder.Services.AddRouting(options =>
    options.ConstraintMap["slugify"] = typeof(SlugifyParameterTransformer));

The ASP.NET Core framework uses parameter transformers to transform the URI where an endpoint resolves. For example, parameter transformers transform the route values used to match an area, controller, action, and page:

app.MapControllerRoute(
    name: "default",
    pattern: "{controller:slugify=Home}/{action:slugify=Index}/{id?}");

With the preceding route template, the action SubscriptionManagementController.GetAll is matched with the URI /subscription-management/get-all. A parameter transformer doesn't change the route values used to generate a link. For example, Url.Action("GetAll", "SubscriptionManagement") outputs /subscription-management/get-all.

ASP.NET Core provides API conventions for using parameter transformers with generated routes:

URL generation reference

This section contains a reference for the algorithm implemented by URL generation. In practice, most complex examples of URL generation use controllers or Razor Pages. See routing in controllers for additional information.

The URL generation process begins with a call to LinkGenerator.GetPathByAddress or a similar method. The method is provided with an address, a set of route values, and optionally information about the current request from HttpContext.

The first step is to use the address to resolve a set of candidate endpoints using an IEndpointAddressScheme that matches the address's type.

Once the set of candidates is found by the address scheme, the endpoints are ordered and processed iteratively until a URL generation operation succeeds. URL generation does not check for ambiguities, the first result returned is the final result.

Troubleshooting URL generation with logging

The first step in troubleshooting URL generation is setting the logging level of Microsoft.AspNetCore.Routing to TRACE. LinkGenerator logs many details about its processing which can be useful to troubleshoot problems.

See URL generation reference for details on URL generation.

Addresses

Addresses are the concept in URL generation used to bind a call into the link generator to a set of candidate endpoints.

Addresses are an extensible concept that come with two implementations by default:

The role of the address scheme is to make the association between the address and matching endpoints by arbitrary criteria:

Ambient values and explicit values

From the current request, routing accesses the route values of the current request HttpContext.Request.RouteValues. The values associated with the current request are referred to as the ambient values. For the purpose of clarity, the documentation refers to the route values passed in to methods as explicit values.

The following example shows ambient values and explicit values. It provides ambient values from the current request and explicit values:

public class WidgetController : ControllerBase
{
    private readonly LinkGenerator _linkGenerator;

    public WidgetController(LinkGenerator linkGenerator) =>
        _linkGenerator = linkGenerator;

    public IActionResult Index()
    {
        var indexPath = _linkGenerator.GetPathByAction(
            HttpContext, values: new { id = 17 })!;

        return Content(indexPath);
    }

    // ...

The preceding code:

The following code provides only explicit values and no ambient values:

var subscribePath = _linkGenerator.GetPathByAction(
    "Subscribe", "Home", new { id = 17 })!;

The preceding method returns /Home/Subscribe/17

The following code in the WidgetController returns /Widget/Subscribe/17:

var subscribePath = _linkGenerator.GetPathByAction(
    HttpContext, "Subscribe", null, new { id = 17 });

The following code provides the controller from ambient values in the current request and explicit values:

public class GadgetController : ControllerBase
{
    public IActionResult Index() =>
        Content(Url.Action("Edit", new { id = 17 })!);
}

In the preceding code:

The following code provides ambient values from the current request and explicit values:

public class IndexModel : PageModel
{
    public void OnGet()
    {
        var editUrl = Url.Page("./Edit", new { id = 17 });

        // ...
    }
}

The preceding code sets url to /Edit/17 when the Edit Razor Page contains the following page directive:

@page "{id:int}"

If the Edit page doesn't contain the "{id:int}" route template, url is /Edit?id=17.

The behavior of MVC's IUrlHelper adds a layer of complexity in addition to the rules described here:

Users are often surprised by the behavioral details of ambient values, because MVC doesn't seem to follow its own rules. For historical and compatibility reasons, certain route values such as action, controller, page, and handler have their own special-case behavior.

The equivalent functionality provided by LinkGenerator.GetPathByAction and LinkGenerator.GetPathByPage duplicates these anomalies of IUrlHelper for compatibility.

URL generation process

Once the set of candidate endpoints are found, the URL generation algorithm:

The first step in this process is called route value invalidation. Route value invalidation is the process by which routing decides which route values from the ambient values should be used and which should be ignored. Each ambient value is considered and either combined with the explicit values, or ignored.

The best way to think about the role of ambient values is that they attempt to save application developers typing, in some common cases. Traditionally, the scenarios where ambient values are helpful are related to MVC:

Calls to LinkGenerator or IUrlHelper that return null are usually caused by not understanding route value invalidation. Troubleshoot route value invalidation by explicitly specifying more of the route values to see if that solves the problem.

Route value invalidation works on the assumption that the app's URL scheme is hierarchical, with a hierarchy formed from left-to-right. Consider the basic controller route template {controller}/{action}/{id?} to get an intuitive sense of how this works in practice. A change to a value invalidates all of the route values that appear to the right. This reflects the assumption about hierarchy. If the app has an ambient value for id, and the operation specifies a different value for the controller:

Some examples demonstrating this principle:

This process is further complicated by the existence of attribute routes and dedicated conventional routes. Controller conventional routes such as {controller}/{action}/{id?} specify a hierarchy using route parameters. For dedicated conventional routes and attribute routes to controllers and Razor Pages:

For these cases, URL generation defines the required values concept. Endpoints created by controllers and Razor Pages have required values specified that allow route value invalidation to work.

The route value invalidation algorithm in detail:

At this point, the URL generation operation is ready to evaluate route constraints. The set of accepted values is combined with the parameter default values, which is provided to constraints. If the constraints all pass, the operation continues.

Next, the accepted values can be used to expand the route template. The route template is processed:

Values explicitly provided that don't match a segment of the route are added to the query string. The following table shows the result when using the route template {controller}/{action}/{id?}.

Ambient Values Explicit Values Result
controller = "Home" action = "About" /Home/About
controller = "Home" controller = "Order", action = "About" /Order/About
controller = "Home", color = "Red" action = "About" /Home/About
controller = "Home" action = "About", color = "Red" /Home/About?color=Red

Optional route parameter order

Optional route parameters must come after all required route parameters. In the following code, the id and name parameters must come after the color parameter:

using Microsoft.AspNetCore.Mvc;

namespace WebApplication1.Controllers;

[Route("api/[controller]")]
public class MyController : ControllerBase
{
    // GET /api/my/red/2/joe
    // GET /api/my/red/2
    // GET /api/my
    [HttpGet("{color}/{id:int?}/{name?}")]
    public IActionResult GetByIdAndOptionalName(string color, int id = 1, string? name = null)
    {
        return Ok($"{color} {id} {name ?? ""}");
    }
}

Problems with route value invalidation

The following code shows an example of a URL generation scheme that's not supported by routing:

app.MapControllerRoute(
    "default",
    "{culture}/{controller=Home}/{action=Index}/{id?}");

app.MapControllerRoute(
    "blog",
    "{culture}/{**slug}",
    new { controller = "Blog", action = "ReadPost" });

In the preceding code, the culture route parameter is used for localization. The desire is to have the culture parameter always accepted as an ambient value. However, the culture parameter is not accepted as an ambient value because of the way required values work:

Parse URL paths with LinkParser

The LinkParser class adds support for parsing a URL path into a set of route values. The ParsePathByEndpointName method takes an endpoint name and a URL path, and returns a set of route values extracted from the URL path.

In the following example controller, the GetProduct action uses a route template of api/Products/{id} and has a Name of GetProduct:

[ApiController]
[Route("api/[controller]")]
public class ProductsController : ControllerBase
{
    [HttpGet("{id}", Name = nameof(GetProduct))]
    public IActionResult GetProduct(string id)
    {
        // ...

In the same controller class, the AddRelatedProduct action expects a URL path, pathToRelatedProduct, which can be provided as a query-string parameter:

[HttpPost("{id}/Related")]
public IActionResult AddRelatedProduct(
    string id, string pathToRelatedProduct, [FromServices] LinkParser linkParser)
{
    var routeValues = linkParser.ParsePathByEndpointName(
        nameof(GetProduct), pathToRelatedProduct);
    var relatedProductId = routeValues?["id"];

    // ...

In the preceding example, the AddRelatedProduct action extracts the id route value from the URL path. For example, with a URL path of /api/Products/1, the relatedProductId value is set to 1. This approach allows the API's clients to use URL paths when referring to resources, without requiring knowledge of how such a URL is structured.

The following links provide information on how to configure endpoint metadata:

Host matching in routes with RequireHost

RequireHost applies a constraint to the route which requires the specified host. The RequireHost or [Host] parameter can be a:

Multiple parameters can be specified using RequireHost or [Host]. The constraint matches hosts valid for any of the parameters. For example, [Host("domain.com", "*.domain.com")] matches domain.com, www.domain.com, and subdomain.domain.com.

The following code uses RequireHost to require the specified host on the route:

app.MapGet("/", () => "Contoso").RequireHost("contoso.com");
app.MapGet("/", () => "AdventureWorks").RequireHost("adventure-works.com");

app.MapHealthChecks("/healthz").RequireHost("*:8080");

The following code uses the [Host] attribute on the controller to require any of the specified hosts:

[Host("contoso.com", "adventure-works.com")]
public class HostsController : Controller
{
    public IActionResult Index() =>
        View();

    [Host("example.com")]
    public IActionResult Example() =>
        View();
}

When the [Host] attribute is applied to both the controller and action method:

Route groups

The MapGroup extension method helps organize groups of endpoints with a common prefix. It reduces repetitive code and allows for customizing entire groups of endpoints with a single call to methods like RequireAuthorization and WithMetadata which add endpoint metadata.

For example, the following code creates two similar groups of endpoints:

app.MapGroup("/public/todos")
    .MapTodosApi()
    .WithTags("Public");

app.MapGroup("/private/todos")
    .MapTodosApi()
    .WithTags("Private")
    .AddEndpointFilterFactory(QueryPrivateTodos)
    .RequireAuthorization();


EndpointFilterDelegate QueryPrivateTodos(EndpointFilterFactoryContext factoryContext, EndpointFilterDelegate next)
{
    var dbContextIndex = -1;

    foreach (var argument in factoryContext.MethodInfo.GetParameters())
    {
        if (argument.ParameterType == typeof(TodoDb))
        {
            dbContextIndex = argument.Position;
            break;
        }
    }

    // Skip filter if the method doesn't have a TodoDb parameter.
    if (dbContextIndex < 0)
    {
        return next;
    }

    return async invocationContext =>
    {
        var dbContext = invocationContext.GetArgument<TodoDb>(dbContextIndex);
        dbContext.IsPrivate = true;

        try
        {
            return await next(invocationContext);
        }
        finally
        {
            // This should only be relevant if you're pooling or otherwise reusing the DbContext instance.
            dbContext.IsPrivate = false;
        }
    };
}
public static RouteGroupBuilder MapTodosApi(this RouteGroupBuilder group)
{
    group.MapGet("/", GetAllTodos);
    group.MapGet("/{id}", GetTodo);
    group.MapPost("/", CreateTodo);
    group.MapPut("/{id}", UpdateTodo);
    group.MapDelete("/{id}", DeleteTodo);

    return group;
}

In this scenario, you can use a relative address for the Location header in the 201 Created result:

public static async Task<Created<Todo>> CreateTodo(Todo todo, TodoDb database)
{
    await database.AddAsync(todo);
    await database.SaveChangesAsync();

    return TypedResults.Created($"{todo.Id}", todo);
}

The first group of endpoints will only match requests prefixed with /public/todos and are accessible without any authentication. The second group of endpoints will only match requests prefixed with /private/todos and require authentication.

The QueryPrivateTodos endpoint filter factory is a local function that modifies the route handler's TodoDb parameters to allow to access and store private todo data.

Route groups also support nested groups and complex prefix patterns with route parameters and constraints. In the following example, and route handler mapped to the user group can capture the {org} and {group} route parameters defined in the outer group prefixes.

The prefix can also be empty. This can be useful for adding endpoint metadata or filters to a group of endpoints without changing the route pattern.

var all = app.MapGroup("").WithOpenApi();
var org = all.MapGroup("{org}");
var user = org.MapGroup("{user}");
user.MapGet("", (string org, string user) => $"{org}/{user}");

Adding filters or metadata to a group behaves the same way as adding them individually to each endpoint before adding any extra filters or metadata that may have been added to an inner group or specific endpoint.

var outer = app.MapGroup("/outer");
var inner = outer.MapGroup("/inner");

inner.AddEndpointFilter((context, next) =>
{
    app.Logger.LogInformation("/inner group filter");
    return next(context);
});

outer.AddEndpointFilter((context, next) =>
{
    app.Logger.LogInformation("/outer group filter");
    return next(context);
});

inner.MapGet("/", () => "Hi!").AddEndpointFilter((context, next) =>
{
    app.Logger.LogInformation("MapGet filter");
    return next(context);
});

In the above example, the outer filter will log the incoming request before the inner filter even though it was added second. Because the filters were applied to different groups, the order they were added relative to each other does not matter. The order filters are added does matter if applied to the same group or specific endpoint.

A request to /outer/inner/ will log the following:

/outer group filter
/inner group filter
MapGet filter

Performance guidance for routing

When an app has performance problems, routing is often suspected as the problem. The reason routing is suspected is that frameworks like controllers and Razor Pages report the amount of time spent inside the framework in their logging messages. When there's a significant difference between the time reported by controllers and the total time of the request:

Routing is performance tested using thousands of endpoints. It's unlikely that a typical app will encounter a performance problem just by being too large. The most common root cause of slow routing performance is usually a badly-behaving custom middleware.

This following code sample demonstrates a basic technique for narrowing down the source of delay:

var logger = app.Services.GetRequiredService<ILogger<Program>>();

app.Use(async (context, next) =>
{
    var stopwatch = Stopwatch.StartNew();
    await next(context);
    stopwatch.Stop();

    logger.LogInformation("Time 1: {ElapsedMilliseconds}ms", stopwatch.ElapsedMilliseconds);
});

app.UseRouting();

app.Use(async (context, next) =>
{
    var stopwatch = Stopwatch.StartNew();
    await next(context);
    stopwatch.Stop();

    logger.LogInformation("Time 2: {ElapsedMilliseconds}ms", stopwatch.ElapsedMilliseconds);
});

app.UseAuthorization();

app.Use(async (context, next) =>
{
    var stopwatch = Stopwatch.StartNew();
    await next(context);
    stopwatch.Stop();

    logger.LogInformation("Time 3: {ElapsedMilliseconds}ms", stopwatch.ElapsedMilliseconds);
});

app.MapGet("/", () => "Timing Test.");

To time routing:

This is a basic way to narrow down the delay when it's significant, for example, more than 10ms. Subtracting Time 2 from Time 1 reports the time spent inside the UseRouting middleware.

The following code uses a more compact approach to the preceding timing code:

public sealed class AutoStopwatch : IDisposable
{
    private readonly ILogger _logger;
    private readonly string _message;
    private readonly Stopwatch _stopwatch;
    private bool _disposed;

    public AutoStopwatch(ILogger logger, string message) =>
        (_logger, _message, _stopwatch) = (logger, message, Stopwatch.StartNew());

    public void Dispose()
    {
        if (_disposed)
        {
            return;
        }

        _logger.LogInformation("{Message}: {ElapsedMilliseconds}ms",
            _message, _stopwatch.ElapsedMilliseconds);

        _disposed = true;
    }
}
var logger = app.Services.GetRequiredService<ILogger<Program>>();
var timerCount = 0;

app.Use(async (context, next) =>
{
    using (new AutoStopwatch(logger, $"Time {++timerCount}"))
    {
        await next(context);
    }
});

app.UseRouting();

app.Use(async (context, next) =>
{
    using (new AutoStopwatch(logger, $"Time {++timerCount}"))
    {
        await next(context);
    }
});

app.UseAuthorization();

app.Use(async (context, next) =>
{
    using (new AutoStopwatch(logger, $"Time {++timerCount}"))
    {
        await next(context);
    }
});

app.MapGet("/", () => "Timing Test.");

Potentially expensive routing features

The following list provides some insight into routing features that are relatively expensive compared with basic route templates:

Guidance for large route tables

By default ASP.NET Core uses a routing algorithm that trades memory for CPU time. This has the nice effect that route matching time is dependent only on the length of the path to match and not the number of routes. However, this approach can be potentially problematic in some cases, when the app has a large number of routes (in the thousands) and there is a high amount of variable prefixes in the routes. For example, if the routes have parameters in early segments of the route, like {parameter}/some/literal.

It is unlikely for an app to run into a situation where this is a problem unless:

How to determine if an app is running into the large route table problem

How to address this issue

There are several techniques and optimizations can be applied to routes that will largely improve this scenario:

Guidance for library authors

This section contains guidance for library authors building on top of routing. These details are intended to ensure that app developers have a good experience using libraries and frameworks that extend routing.

Define endpoints

To create a framework that uses routing for URL matching, start by defining a user experience that builds on top of UseEndpoints.

DO build on top of IEndpointRouteBuilder. This allows users to compose your framework with other ASP.NET Core features without confusion. Every ASP.NET Core template includes routing. Assume routing is present and familiar for users.

// Your framework
app.MapMyFramework(...);

app.MapHealthChecks("/healthz");

DO return a sealed concrete type from a call to MapMyFramework(...) that implements IEndpointConventionBuilder. Most framework Map... methods follow this pattern. The IEndpointConventionBuilder interface:

Declaring your own type allows you to add your own framework-specific functionality to the builder. It's ok to wrap a framework-declared builder and forward calls to it.

// Your framework
app.MapMyFramework(...)
    .RequireAuthorization()
    .WithMyFrameworkFeature(awesome: true);

app.MapHealthChecks("/healthz");

CONSIDER writing your own EndpointDataSource. EndpointDataSource is the low-level primitive for declaring and updating a collection of endpoints. EndpointDataSource is a powerful API used by controllers and Razor Pages.

The routing tests have a basic example of a non-updating data source.

CONSIDER implementing GetGroupedEndpoints. This gives complete control over running group conventions and the final metadata on the grouped endpoints. For example, this allows custom EndpointDataSource implementations to run endpoint filters added to groups.

DO NOT attempt to register an EndpointDataSource by default. Require users to register your framework in UseEndpoints. The philosophy of routing is that nothing is included by default, and that UseEndpoints is the place to register endpoints.

Creating routing-integrated middleware

CONSIDER defining metadata types as an interface.

DO make it possible to use metadata types as an attribute on classes and methods.

public interface ICoolMetadata
{
    bool IsCool { get; }
}

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Method)]
public class CoolMetadataAttribute : Attribute, ICoolMetadata
{
    public bool IsCool => true;
}

Frameworks like controllers and Razor Pages support applying metadata attributes to types and methods. If you declare metadata types:

Declaring a metadata type as an interface adds another layer of flexibility:

DO make it possible to override metadata, as shown in the following example:

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Method)]
public class SuppressCoolMetadataAttribute : Attribute, ICoolMetadata
{
    public bool IsCool => false;
}

[CoolMetadata]
public class MyController : Controller
{
    public void MyCool() { }

    [SuppressCoolMetadata]
    public void Uncool() { }
}

The best way to follow these guidelines is to avoid defining marker metadata:

The metadata collection is ordered and supports overriding by priority. In the case of controllers, metadata on the action method is most specific.

DO make middleware useful with and without routing:

app.UseAuthorization(new AuthorizationPolicy() { ... });

// Your framework
app.MapMyFramework(...).RequireAuthorization();

As an example of this guideline, consider the UseAuthorization middleware. The authorization middleware allows you to pass in a fallback policy. The fallback policy, if specified, applies to both:

This makes the authorization middleware useful outside of the context of routing. The authorization middleware can be used for traditional middleware programming.

Debug diagnostics

For detailed routing diagnostic output, set Logging:LogLevel:Microsoft to Debug. In the development environment, set the log level in appsettings.Development.json:

{
  "Logging": {
    "LogLevel": {
      "Default": "Information",
      "Microsoft": "Debug",
      "Microsoft.Hosting.Lifetime": "Information"
    }
  }
}

Additional resources

Routing is responsible for matching incoming HTTP requests and dispatching those requests to the app's executable endpoints. Endpoints are the app's units of executable request-handling code. Endpoints are defined in the app and configured when the app starts. The endpoint matching process can extract values from the request's URL and provide those values for request processing. Using endpoint information from the app, routing is also able to generate URLs that map to endpoints.

Apps can configure routing using:

This article covers low-level details of ASP.NET Core routing. For information on configuring routing:

Routing basics

The following code shows a basic example of routing:

var builder = WebApplication.CreateBuilder(args);
var app = builder.Build();

app.MapGet("/", () => "Hello World!");

app.Run();

The preceding example includes a single endpoint using the MapGet method:

Routing uses a pair of middleware, registered by UseRouting and UseEndpoints:

Apps typically don't need to call UseRouting or UseEndpoints. WebApplicationBuilder configures a middleware pipeline that wraps middleware added in Program.cs with UseRouting and UseEndpoints. However, apps can change the order in which UseRouting and UseEndpoints run by calling these methods explicitly. For example, the following code makes an explicit call to UseRouting:

app.Use(async (context, next) =>
{
    // ...
    await next(context);
});

app.UseRouting();

app.MapGet("/", () => "Hello World!");

In the preceding code:

If the preceding example didn't include a call to UseRouting, the custom middleware would run after the route matching middleware.

Endpoints

The MapGet method is used to define an endpoint. An endpoint is something that can be:

Endpoints that can be matched and executed by the app are configured in UseEndpoints. For example, MapGet, MapPost, and similar methods connect request delegates to the routing system. Additional methods can be used to connect ASP.NET Core framework features to the routing system:

The following example shows routing with a more sophisticated route template:

app.MapGet("/hello/{name:alpha}", (string name) => $"Hello {name}!");

The string /hello/{name:alpha} is a route template. A route template is used to configure how the endpoint is matched. In this case, the template matches:

The second segment of the URL path, {name:alpha}:

The following example shows routing with health checks and authorization:

app.UseAuthentication();
app.UseAuthorization();

app.MapHealthChecks("/healthz").RequireAuthorization();
app.MapGet("/", () => "Hello World!");

The preceding example demonstrates how:

The MapHealthChecks call adds a health check endpoint. Chaining RequireAuthorization on to this call attaches an authorization policy to the endpoint.

Calling UseAuthentication and UseAuthorization adds the authentication and authorization middleware. These middleware are placed between UseRouting and UseEndpoints so that they can:

Endpoint metadata

In the preceding example, there are two endpoints, but only the health check endpoint has an authorization policy attached. If the request matches the health check endpoint, /healthz, an authorization check is performed. This demonstrates that endpoints can have extra data attached to them. This extra data is called endpoint metadata:

Routing concepts

The routing system builds on top of the middleware pipeline by adding the powerful endpoint concept. Endpoints represent units of the app's functionality that are distinct from each other in terms of routing, authorization, and any number of ASP.NET Core's systems.

ASP.NET Core endpoint definition

An ASP.NET Core endpoint is:

The following code shows how to retrieve and inspect the endpoint matching the current request:

app.Use(async (context, next) =>
{
    var currentEndpoint = context.GetEndpoint();

    if (currentEndpoint is null)
    {
        await next(context);
        return;
    }

    Console.WriteLine($"Endpoint: {currentEndpoint.DisplayName}");

    if (currentEndpoint is RouteEndpoint routeEndpoint)
    {
        Console.WriteLine($"  - Route Pattern: {routeEndpoint.RoutePattern}");
    }

    foreach (var endpointMetadata in currentEndpoint.Metadata)
    {
        Console.WriteLine($"  - Metadata: {endpointMetadata}");
    }

    await next(context);
});

app.MapGet("/", () => "Inspect Endpoint.");

The endpoint, if selected, can be retrieved from the HttpContext. Its properties can be inspected. Endpoint objects are immutable and cannot be modified after creation. The most common type of endpoint is a RouteEndpoint. RouteEndpoint includes information that allows it to be selected by the routing system.

In the preceding code, app.Use configures an inline middleware.

The following code shows that, depending on where app.Use is called in the pipeline, there may not be an endpoint:

// Location 1: before routing runs, endpoint is always null here.
app.Use(async (context, next) =>
{
    Console.WriteLine($"1. Endpoint: {context.GetEndpoint()?.DisplayName ?? "(null)"}");
    await next(context);
});

app.UseRouting();

// Location 2: after routing runs, endpoint will be non-null if routing found a match.
app.Use(async (context, next) =>
{
    Console.WriteLine($"2. Endpoint: {context.GetEndpoint()?.DisplayName ?? "(null)"}");
    await next(context);
});

// Location 3: runs when this endpoint matches
app.MapGet("/", (HttpContext context) =>
{
    Console.WriteLine($"3. Endpoint: {context.GetEndpoint()?.DisplayName ?? "(null)"}");
    return "Hello World!";
}).WithDisplayName("Hello");

app.UseEndpoints(_ => { });

// Location 4: runs after UseEndpoints - will only run if there was no match.
app.Use(async (context, next) =>
{
    Console.WriteLine($"4. Endpoint: {context.GetEndpoint()?.DisplayName ?? "(null)"}");
    await next(context);
});

The preceding sample adds Console.WriteLine statements that display whether or not an endpoint has been selected. For clarity, the sample assigns a display name to the provided / endpoint.

The preceding sample also includes calls to UseRouting and UseEndpoints to control exactly when these middleware run within the pipeline.

Running this code with a URL of / displays:

1. Endpoint: (null)
2. Endpoint: Hello
3. Endpoint: Hello

Running this code with any other URL displays:

1. Endpoint: (null)
2. Endpoint: (null)
4. Endpoint: (null)

This output demonstrates that:

The UseRouting middleware uses the SetEndpoint method to attach the endpoint to the current context. It's possible to replace the UseRouting middleware with custom logic and still get the benefits of using endpoints. Endpoints are a low-level primitive like middleware, and aren't coupled to the routing implementation. Most apps don't need to replace UseRouting with custom logic.

The UseEndpoints middleware is designed to be used in tandem with the UseRouting middleware. The core logic to execute an endpoint isn't complicated. Use GetEndpoint to retrieve the endpoint, and then invoke its RequestDelegate property.

The following code demonstrates how middleware can influence or react to routing:

app.UseHttpMethodOverride();
app.UseRouting();

app.Use(async (context, next) =>
{
    if (context.GetEndpoint()?.Metadata.GetMetadata<RequiresAuditAttribute>() is not null)
    {
        Console.WriteLine($"ACCESS TO SENSITIVE DATA AT: {DateTime.UtcNow}");
    }

    await next(context);
});

app.MapGet("/", () => "Audit isn't required.");
app.MapGet("/sensitive", () => "Audit required for sensitive data.")
    .WithMetadata(new RequiresAuditAttribute());
public class RequiresAuditAttribute : Attribute { }

The preceding example demonstrates two important concepts:

The preceding code shows an example of a custom middleware that supports per-endpoint policies. The middleware writes an audit log of access to sensitive data to the console. The middleware can be configured to audit an endpoint with the RequiresAuditAttribute metadata. This sample demonstrates an opt-in pattern where only endpoints that are marked as sensitive are audited. It's possible to define this logic in reverse, auditing everything that isn't marked as safe, for example. The endpoint metadata system is flexible. This logic could be designed in whatever way suits the use case.

The preceding sample code is intended to demonstrate the basic concepts of endpoints. The sample is not intended for production use. A more complete version of an audit log middleware would:

The audit policy metadata RequiresAuditAttribute is defined as an Attribute for easier use with class-based frameworks such as controllers and SignalR. When using route to code:

The best practices for metadata types are to define them either as interfaces or attributes. Interfaces and attributes allow code reuse. The metadata system is flexible and doesn't impose any limitations.

Compare terminal middleware with routing

The following example demonstrates both terminal middleware and routing:

// Approach 1: Terminal Middleware.
app.Use(async (context, next) =>
{
    if (context.Request.Path == "/")
    {
        await context.Response.WriteAsync("Terminal Middleware.");
        return;
    }

    await next(context);
});

app.UseRouting();

// Approach 2: Routing.
app.MapGet("/Routing", () => "Routing.");

The style of middleware shown with Approach 1: is terminal middleware. It's called terminal middleware because it does a matching operation:

It's called terminal middleware because it terminates the search, executes some functionality, and then returns.

The following list compares terminal middleware with routing:

An endpoint defines both:

Terminal middleware can be an effective tool, but can require:

Consider integrating with routing before writing a terminal middleware.

Existing terminal middleware that integrates with Map or MapWhen can usually be turned into a routing aware endpoint. MapHealthChecks demonstrates the pattern for router-ware:

The following code shows use of MapHealthChecks:

app.UseAuthentication();
app.UseAuthorization();

app.MapHealthChecks("/healthz").RequireAuthorization();

The preceding sample shows why returning the builder object is important. Returning the builder object allows the app developer to configure policies such as authorization for the endpoint. In this example, the health checks middleware has no direct integration with the authorization system.

The metadata system was created in response to the problems encountered by extensibility authors using terminal middleware. It's problematic for each middleware to implement its own integration with the authorization system.

URL matching

When a routing middleware executes, it sets an Endpoint and route values to a request feature on the HttpContext from the current request:

Middleware runs after the routing middleware can inspect the endpoint and take action. For example, an authorization middleware can interrogate the endpoint's metadata collection for an authorization policy. After all of the middleware in the request processing pipeline is executed, the selected endpoint's delegate is invoked.

The routing system in endpoint routing is responsible for all dispatching decisions. Because the middleware applies policies based on the selected endpoint, it's important that:

Warning

For backward-compatibility, when a Controller or Razor Pages endpoint delegate is executed, the properties of RouteContext.RouteData are set to appropriate values based on the request processing performed thus far.

The RouteContext type will be marked obsolete in a future release:

URL matching operates in a configurable set of phases. In each phase, the output is a set of matches. The set of matches can be narrowed down further by the next phase. The routing implementation does not guarantee a processing order for matching endpoints. All possible matches are processed at once. The URL matching phases occur in the following order. ASP.NET Core:

  1. Processes the URL path against the set of endpoints and their route templates, collecting all of the matches.
  2. Takes the preceding list and removes matches that fail with route constraints applied.
  3. Takes the preceding list and removes matches that fail the set of MatcherPolicy instances.
  4. Uses the EndpointSelector to make a final decision from the preceding list.

The list of endpoints is prioritized according to:

All matching endpoints are processed in each phase until the EndpointSelector is reached. The EndpointSelector is the final phase. It chooses the highest priority endpoint from the matches as the best match. If there are other matches with the same priority as the best match, an ambiguous match exception is thrown.

The route precedence is computed based on a more specific route template being given a higher priority. For example, consider the templates /hello and /{message}:

In general, route precedence does a good job of choosing the best match for the kinds of URL schemes used in practice. Use Order only when necessary to avoid an ambiguity.

Due to the kinds of extensibility provided by routing, it isn't possible for the routing system to compute ahead of time the ambiguous routes. Consider an example such as the route templates /{message:alpha} and /{message:int}:

Warning

The order of operations inside UseEndpoints doesn't influence the behavior of routing, with one exception. MapControllerRoute and MapAreaRoute automatically assign an order value to their endpoints based on the order they are invoked. This simulates long-time behavior of controllers without the routing system providing the same guarantees as older routing implementations.

Endpoint routing in ASP.NET Core:

Route template precedence and endpoint selection order

Route template precedence is a system that assigns each route template a value based on how specific it is. Route template precedence:

For example, consider templates /Products/List and /Products/{id}. It would be reasonable to assume that /Products/List is a better match than /Products/{id} for the URL path /Products/List. This works because the literal segment /List is considered to have better precedence than the parameter segment /{id}.

The details of how precedence works are coupled to how route templates are defined:

URL generation concepts

URL generation:

Endpoint routing includes the LinkGenerator API. LinkGenerator is a singleton service available from DI. The LinkGenerator API can be used outside of the context of an executing request. Mvc.IUrlHelper and scenarios that rely on IUrlHelper, such as Tag Helpers, HTML Helpers, and Action Results, use the LinkGenerator API internally to provide link generating capabilities.

The link generator is backed by the concept of an address and address schemes. An address scheme is a way of determining the endpoints that should be considered for link generation. For example, the route name and route values scenarios many users are familiar with from controllers and Razor Pages are implemented as an address scheme.

The link generator can link to controllers and Razor Pages via the following extension methods:

Overloads of these methods accept arguments that include the HttpContext. These methods are functionally equivalent to Url.Action and Url.Page, but offer additional flexibility and options.

The GetPath* methods are most similar to Url.Action and Url.Page, in that they generate a URI containing an absolute path. The GetUri* methods always generate an absolute URI containing a scheme and host. The methods that accept an HttpContext generate a URI in the context of the executing request. The ambient route values, URL base path, scheme, and host from the executing request are used unless overridden.

LinkGenerator is called with an address. Generating a URI occurs in two steps:

  1. An address is bound to a list of endpoints that match the address.
  2. Each endpoint's RoutePattern is evaluated until a route pattern that matches the supplied values is found. The resulting output is combined with the other URI parts supplied to the link generator and returned.

The methods provided by LinkGenerator support standard link generation capabilities for any type of address. The most convenient way to use the link generator is through extension methods that perform operations for a specific address type:

Extension Method Description
GetPathByAddress Generates a URI with an absolute path based on the provided values.
GetUriByAddress Generates an absolute URI based on the provided values.

Warning

Pay attention to the following implications of calling LinkGenerator methods:

Middleware example

In the following example, a middleware uses the LinkGenerator API to create a link to an action method that lists store products. Using the link generator by injecting it into a class and calling GenerateLink is available to any class in an app:

public class ProductsMiddleware
{
    private readonly LinkGenerator _linkGenerator;

    public ProductsMiddleware(RequestDelegate next, LinkGenerator linkGenerator) =>
        _linkGenerator = linkGenerator;

    public async Task InvokeAsync(HttpContext httpContext)
    {
        httpContext.Response.ContentType = MediaTypeNames.Text.Plain;

        var productsPath = _linkGenerator.GetPathByAction("Products", "Store");

        await httpContext.Response.WriteAsync(
            $"Go to {productsPath} to see our products.");
    }
}

Route templates

Tokens within {} define route parameters that are bound if the route is matched. More than one route parameter can be defined in a route segment, but route parameters must be separated by a literal value. For example:

{controller=Home}{action=Index}

isn't a valid route, because there's no literal value between {controller} and {action}. Route parameters must have a name and may have additional attributes specified.

Literal text other than route parameters (for example, {id}) and the path separator / must match the text in the URL. Text matching is case-insensitive and based on the decoded representation of the URL's path. To match a literal route parameter delimiter { or }, escape the delimiter by repeating the character. For example {{ or }}.

Asterisk * or double asterisk **:

Warning

A catch-all parameter may match routes incorrectly due to a bug in routing. Apps impacted by this bug have the following characteristics:

See GitHub bugs 18677 and 16579 for example cases that hit this bug.

An opt-in fix for this bug is contained in .NET Core 3.1.301 or later SDK. The following code sets an internal switch that fixes this bug:

public static void Main(string[] args)
{
   AppContext.SetSwitch("Microsoft.AspNetCore.Routing.UseCorrectCatchAllBehavior", 
                         true);
   CreateHostBuilder(args).Build().Run();
}
// Remaining code removed for brevity.

Catch-all parameters can also match the empty string.

The catch-all parameter escapes the appropriate characters when the route is used to generate a URL, including path separator / characters. For example, the route foo/{*path} with route values { path = "my/path" } generates foo/my%2Fpath. Note the escaped forward slash. To round-trip path separator characters, use the ** route parameter prefix. The route foo/{**path} with { path = "my/path" } generates foo/my/path.

URL patterns that attempt to capture a file name with an optional file extension have additional considerations. For example, consider the template files/{filename}.{ext?}. When values for both filename and ext exist, both values are populated. If only a value for filename exists in the URL, the route matches because the trailing . is optional. The following URLs match this route:

Route parameters may have default values designated by specifying the default value after the parameter name separated by an equals sign (=). For example, {controller=Home} defines Home as the default value for controller. The default value is used if no value is present in the URL for the parameter. Route parameters are made optional by appending a question mark (?) to the end of the parameter name. For example, id?. The difference between optional values and default route parameters is:

Route parameters may have constraints that must match the route value bound from the URL. Adding : and constraint name after the route parameter name specifies an inline constraint on a route parameter. If the constraint requires arguments, they're enclosed in parentheses (...) after the constraint name. Multiple inline constraints can be specified by appending another : and constraint name.

The constraint name and arguments are passed to the IInlineConstraintResolver service to create an instance of IRouteConstraint to use in URL processing. For example, the route template blog/{article:minlength(10)} specifies a minlength constraint with the argument 10. For more information on route constraints and a list of the constraints provided by the framework, see the Route constraints section.

Route parameters may also have parameter transformers. Parameter transformers transform a parameter's value when generating links and matching actions and pages to URLs. Like constraints, parameter transformers can be added inline to a route parameter by adding a : and transformer name after the route parameter name. For example, the route template blog/{article:slugify} specifies a slugify transformer. For more information on parameter transformers, see the Parameter transformers section.

The following table demonstrates example route templates and their behavior:

Route Template Example Matching URI The request URI…
hello /hello Only matches the single path /hello.
{Page=Home} / Matches and sets Page to Home.
{Page=Home} /Contact Matches and sets Page to Contact.
{controller}/{action}/{id?} /Products/List Maps to the Products controller and List action.
{controller}/{action}/{id?} /Products/Details/123 Maps to the Products controller and Details action withid set to 123.
{controller=Home}/{action=Index}/{id?} / Maps to the Home controller and Index method. id is ignored.
{controller=Home}/{action=Index}/{id?} /Products Maps to the Products controller and Index method. id is ignored.

Using a template is generally the simplest approach to routing. Constraints and defaults can also be specified outside the route template.

Complex segments

Complex segments are processed by matching up literal delimiters from right to left in a non-greedy way. For example, [Route("/a{b}c{d}")] is a complex segment. Complex segments work in a particular way that must be understood to use them successfully. The example in this section demonstrates why complex segments only really work well when the delimiter text doesn't appear inside the parameter values. Using a regex and then manually extracting the values is needed for more complex cases.

This is a summary of the steps that routing performs with the template /a{b}c{d} and the URL path /abcd. The | is used to help visualize how the algorithm works:

Here's an example of a negative case using the same template /a{b}c{d} and the URL path /aabcd. The | is used to help visualize how the algorithm works. This case isn't a match, which is explained by the same algorithm:

Since the matching algorithm is non-greedy:

Regular expressions provide much more control over their matching behavior.

Greedy matching, also known as lazy matching, matches the largest possible string. Non-greedy matches the smallest possible string.

Routing with special characters

Routing with special characters can lead to unexpected results. For example, consider a controller with the following action method:

[HttpGet("{id?}/name")]
public async Task<ActionResult<string>> GetName(string id)
{
    var todoItem = await _context.TodoItems.FindAsync(id);

    if (todoItem == null || todoItem.Name == null)
    {
        return NotFound();
    }

    return todoItem.Name;
}

When string id contains the following encoded values, unexpected results might occur:

ASCII Encoded
/ %2F
+

Route parameters are not always URL decoded. This problem may be addressed in the future. For more information, see this GitHub issue;

Route constraints

Route constraints execute when a match has occurred to the incoming URL and the URL path is tokenized into route values. Route constraints generally inspect the route value associated via the route template and make a true or false decision about whether the value is acceptable. Some route constraints use data outside the route value to consider whether the request can be routed. For example, the HttpMethodRouteConstraint can accept or reject a request based on its HTTP verb. Constraints are used in routing requests and link generation.

Warning

Don't use constraints for input validation. If constraints are used for input validation, invalid input results in a 404 Not Found response. Invalid input should produce a 400 Bad Request with an appropriate error message. Route constraints are used to disambiguate similar routes, not to validate the inputs for a particular route.

The following table demonstrates example route constraints and their expected behavior:

constraint Example Example Matches Notes
int {id:int} 123456789, -123456789 Matches any integer
bool {active:bool} true, FALSE Matches true or false. Case-insensitive
datetime {dob:datetime} 2016-12-31, 2016-12-31 7:32pm Matches a valid DateTime value in the invariant culture. See preceding warning.
decimal {price:decimal} 49.99, -1,000.01 Matches a valid decimal value in the invariant culture. See preceding warning.
double {weight:double} 1.234, -1,001.01e8 Matches a valid double value in the invariant culture. See preceding warning.
float {weight:float} 1.234, -1,001.01e8 Matches a valid float value in the invariant culture. See preceding warning.
guid {id:guid} CD2C1638-1638-72D5-1638-DEADBEEF1638 Matches a valid Guid value
long {ticks:long} 123456789, -123456789 Matches a valid long value
minlength(value) {username:minlength(4)} Rick String must be at least 4 characters
maxlength(value) {filename:maxlength(8)} MyFile String must be no more than 8 characters
length(length) {filename:length(12)} somefile.txt String must be exactly 12 characters long
length(min,max) {filename:length(8,16)} somefile.txt String must be at least 8 and no more than 16 characters long
min(value) {age:min(18)} 19 Integer value must be at least 18
max(value) {age:max(120)} 91 Integer value must be no more than 120
range(min,max) {age:range(18,120)} 91 Integer value must be at least 18 but no more than 120
alpha {name:alpha} Rick String must consist of one or more alphabetical characters, a-z and case-insensitive.
regex(expression) {ssn:regex(^\\d{{3}}-\\d{{2}}-\\d{{4}}$)} 123-45-6789 String must match the regular expression. See tips about defining a regular expression.
required {name:required} Rick Used to enforce that a non-parameter value is present during URL generation

Multiple, colon delimited constraints can be applied to a single parameter. For example, the following constraint restricts a parameter to an integer value of 1 or greater:

[Route("users/{id:int:min(1)}")]
public User GetUserById(int id) { }

Warning

Route constraints that verify the URL and are converted to a CLR type always use the invariant culture. For example, conversion to the CLR type int or DateTime. These constraints assume that the URL is not localizable. The framework-provided route constraints don't modify the values stored in route values. All route values parsed from the URL are stored as strings. For example, the float constraint attempts to convert the route value to a float, but the converted value is used only to verify it can be converted to a float.

Regular expressions in constraints

Regular expressions can be specified as inline constraints using the regex(...) route constraint. Methods in the MapControllerRoute family also accept an object literal of constraints. If that form is used, string values are interpreted as regular expressions.

The following code uses an inline regex constraint:

app.MapGet("{message:regex(^\\d{{3}}-\\d{{2}}-\\d{{4}}$)}",
    () => "Inline Regex Constraint Matched");

The following code uses an object literal to specify a regex constraint:

app.MapControllerRoute(
    name: "people",
    pattern: "people/{ssn}",
    constraints: new { ssn = "^\\d{3}-\\d{2}-\\d{4}$", },
    defaults: new { controller = "People", action = "List" });

The ASP.NET Core framework adds RegexOptions.IgnoreCase | RegexOptions.Compiled | RegexOptions.CultureInvariant to the regular expression constructor. See RegexOptions for a description of these members.

Regular expressions use delimiters and tokens similar to those used by routing and the C# language. Regular expression tokens must be escaped. To use the regular expression ^\d{3}-\d{2}-\d{4}$ in an inline constraint, use one of the following:

To escape routing parameter delimiter characters {, }, [, ], double the characters in the expression, for example, {{, }}, [[, ]]. The following table shows a regular expression and its escaped version:

Regular expression Escaped regular expression
^\d{3}-\d{2}-\d{4}$ ^\\d{{3}}-\\d{{2}}-\\d{{4}}$
^[a-z]{2}$ ^[[a-z]]{{2}}$

Regular expressions used in routing often start with the ^ character and match the starting position of the string. The expressions often end with the $ character and match the end of the string. The ^ and $ characters ensure that the regular expression matches the entire route parameter value. Without the ^ and $ characters, the regular expression matches any substring within the string, which is often undesirable. The following table provides examples and explains why they match or fail to match:

Expression String Match Comment
[a-z]{2} hello Yes Substring matches
[a-z]{2} 123abc456 Yes Substring matches
[a-z]{2} mz Yes Matches expression
[a-z]{2} MZ Yes Not case sensitive
^[a-z]{2}$ hello No See ^ and $ above
^[a-z]{2}$ 123abc456 No See ^ and $ above

For more information on regular expression syntax, see .NET Framework Regular Expressions.

To constrain a parameter to a known set of possible values, use a regular expression. For example, {action:regex(^(list|get|create)$)} only matches the action route value to list, get, or create. If passed into the constraints dictionary, the string ^(list|get|create)$ is equivalent. Constraints that are passed in the constraints dictionary that don't match one of the known constraints are also treated as regular expressions. Constraints that are passed within a template that don't match one of the known constraints are not treated as regular expressions.

Custom route constraints

Custom route constraints can be created by implementing the IRouteConstraint interface. The IRouteConstraint interface contains Match, which returns true if the constraint is satisfied and false otherwise.

Custom route constraints are rarely needed. Before implementing a custom route constraint, consider alternatives, such as model binding.

The ASP.NET Core Constraints folder provides good examples of creating constraints. For example, GuidRouteConstraint.

To use a custom IRouteConstraint, the route constraint type must be registered with the app's ConstraintMap in the service container. A ConstraintMap is a dictionary that maps route constraint keys to IRouteConstraint implementations that validate those constraints. An app's ConstraintMap can be updated in Program.cs either as part of an AddRouting call or by configuring RouteOptions directly with builder.Services.Configure<RouteOptions>. For example:

builder.Services.AddRouting(options =>
    options.ConstraintMap.Add("noZeroes", typeof(NoZeroesRouteConstraint)));

The preceding constraint is applied in the following code:

[ApiController]
[Route("api/[controller]")]
public class NoZeroesController : ControllerBase
{
    [HttpGet("{id:noZeroes}")]
    public IActionResult Get(string id) =>
        Content(id);
}

The implementation of NoZeroesRouteConstraint prevents 0 being used in a route parameter:

public class NoZeroesRouteConstraint : IRouteConstraint
{
    private static readonly Regex _regex = new(
        @"^[1-9]*$",
        RegexOptions.CultureInvariant | RegexOptions.IgnoreCase,
        TimeSpan.FromMilliseconds(100));

    public bool Match(
        HttpContext? httpContext, IRouter? route, string routeKey,
        RouteValueDictionary values, RouteDirection routeDirection)
    {
        if (!values.TryGetValue(routeKey, out var routeValue))
        {
            return false;
        }

        var routeValueString = Convert.ToString(routeValue, CultureInfo.InvariantCulture);

        if (routeValueString is null)
        {
            return false;
        }

        return _regex.IsMatch(routeValueString);
    }
}

The preceding code:

The following code is a better approach to preventing an id containing a 0 from being processed:

[HttpGet("{id}")]
public IActionResult Get(string id)
{
    if (id.Contains('0'))
    {
        return StatusCode(StatusCodes.Status406NotAcceptable);
    }

    return Content(id);
}

The preceding code has the following advantages over the NoZeroesRouteConstraint approach:

Parameter transformers

Parameter transformers:

For example, a custom slugify parameter transformer in route pattern blog\{article:slugify} with Url.Action(new { article = "MyTestArticle" }) generates blog\my-test-article.

Consider the following IOutboundParameterTransformer implementation:

public class SlugifyParameterTransformer : IOutboundParameterTransformer
{
    public string? TransformOutbound(object? value)
    {
        if (value is null)
        {
            return null;
        }

        return Regex.Replace(
            value.ToString()!,
                "([a-z])([A-Z])",
            "$1-$2",
            RegexOptions.CultureInvariant,
            TimeSpan.FromMilliseconds(100))
            .ToLowerInvariant();
    }
}

To use a parameter transformer in a route pattern, configure it using ConstraintMap in Program.cs:

builder.Services.AddRouting(options =>
    options.ConstraintMap["slugify"] = typeof(SlugifyParameterTransformer));

The ASP.NET Core framework uses parameter transformers to transform the URI where an endpoint resolves. For example, parameter transformers transform the route values used to match an area, controller, action, and page:

app.MapControllerRoute(
    name: "default",
    pattern: "{controller:slugify=Home}/{action:slugify=Index}/{id?}");

With the preceding route template, the action SubscriptionManagementController.GetAll is matched with the URI /subscription-management/get-all. A parameter transformer doesn't change the route values used to generate a link. For example, Url.Action("GetAll", "SubscriptionManagement") outputs /subscription-management/get-all.

ASP.NET Core provides API conventions for using parameter transformers with generated routes:

URL generation reference

This section contains a reference for the algorithm implemented by URL generation. In practice, most complex examples of URL generation use controllers or Razor Pages. See routing in controllers for additional information.

The URL generation process begins with a call to LinkGenerator.GetPathByAddress or a similar method. The method is provided with an address, a set of route values, and optionally information about the current request from HttpContext.

The first step is to use the address to resolve a set of candidate endpoints using an IEndpointAddressScheme that matches the address's type.

Once the set of candidates is found by the address scheme, the endpoints are ordered and processed iteratively until a URL generation operation succeeds. URL generation does not check for ambiguities, the first result returned is the final result.

Troubleshooting URL generation with logging

The first step in troubleshooting URL generation is setting the logging level of Microsoft.AspNetCore.Routing to TRACE. LinkGenerator logs many details about its processing which can be useful to troubleshoot problems.

See URL generation reference for details on URL generation.

Addresses

Addresses are the concept in URL generation used to bind a call into the link generator to a set of candidate endpoints.

Addresses are an extensible concept that come with two implementations by default:

The role of the address scheme is to make the association between the address and matching endpoints by arbitrary criteria:

Ambient values and explicit values

From the current request, routing accesses the route values of the current request HttpContext.Request.RouteValues. The values associated with the current request are referred to as the ambient values. For the purpose of clarity, the documentation refers to the route values passed in to methods as explicit values.

The following example shows ambient values and explicit values. It provides ambient values from the current request and explicit values:

public class WidgetController : ControllerBase
{
    private readonly LinkGenerator _linkGenerator;

    public WidgetController(LinkGenerator linkGenerator) =>
        _linkGenerator = linkGenerator;

    public IActionResult Index()
    {
        var indexPath = _linkGenerator.GetPathByAction(
            HttpContext, values: new { id = 17 })!;

        return Content(indexPath);
    }

    // ...

The preceding code:

The following code provides only explicit values and no ambient values:

var subscribePath = _linkGenerator.GetPathByAction(
    "Subscribe", "Home", new { id = 17 })!;

The preceding method returns /Home/Subscribe/17

The following code in the WidgetController returns /Widget/Subscribe/17:

var subscribePath = _linkGenerator.GetPathByAction(
    HttpContext, "Subscribe", null, new { id = 17 });

The following code provides the controller from ambient values in the current request and explicit values:

public class GadgetController : ControllerBase
{
    public IActionResult Index() =>
        Content(Url.Action("Edit", new { id = 17 })!);
}

In the preceding code:

The following code provides ambient values from the current request and explicit values:

public class IndexModel : PageModel
{
    public void OnGet()
    {
        var editUrl = Url.Page("./Edit", new { id = 17 });

        // ...
    }
}

The preceding code sets url to /Edit/17 when the Edit Razor Page contains the following page directive:

@page "{id:int}"

If the Edit page doesn't contain the "{id:int}" route template, url is /Edit?id=17.

The behavior of MVC's IUrlHelper adds a layer of complexity in addition to the rules described here:

Users are often surprised by the behavioral details of ambient values, because MVC doesn't seem to follow its own rules. For historical and compatibility reasons, certain route values such as action, controller, page, and handler have their own special-case behavior.

The equivalent functionality provided by LinkGenerator.GetPathByAction and LinkGenerator.GetPathByPage duplicates these anomalies of IUrlHelper for compatibility.

URL generation process

Once the set of candidate endpoints are found, the URL generation algorithm:

The first step in this process is called route value invalidation. Route value invalidation is the process by which routing decides which route values from the ambient values should be used and which should be ignored. Each ambient value is considered and either combined with the explicit values, or ignored.

The best way to think about the role of ambient values is that they attempt to save application developers typing, in some common cases. Traditionally, the scenarios where ambient values are helpful are related to MVC:

Calls to LinkGenerator or IUrlHelper that return null are usually caused by not understanding route value invalidation. Troubleshoot route value invalidation by explicitly specifying more of the route values to see if that solves the problem.

Route value invalidation works on the assumption that the app's URL scheme is hierarchical, with a hierarchy formed from left-to-right. Consider the basic controller route template {controller}/{action}/{id?} to get an intuitive sense of how this works in practice. A change to a value invalidates all of the route values that appear to the right. This reflects the assumption about hierarchy. If the app has an ambient value for id, and the operation specifies a different value for the controller:

Some examples demonstrating this principle:

This process is further complicated by the existence of attribute routes and dedicated conventional routes. Controller conventional routes such as {controller}/{action}/{id?} specify a hierarchy using route parameters. For dedicated conventional routes and attribute routes to controllers and Razor Pages:

For these cases, URL generation defines the required values concept. Endpoints created by controllers and Razor Pages have required values specified that allow route value invalidation to work.

The route value invalidation algorithm in detail:

At this point, the URL generation operation is ready to evaluate route constraints. The set of accepted values is combined with the parameter default values, which is provided to constraints. If the constraints all pass, the operation continues.

Next, the accepted values can be used to expand the route template. The route template is processed:

Values explicitly provided that don't match a segment of the route are added to the query string. The following table shows the result when using the route template {controller}/{action}/{id?}.

Ambient Values Explicit Values Result
controller = "Home" action = "About" /Home/About
controller = "Home" controller = "Order", action = "About" /Order/About
controller = "Home", color = "Red" action = "About" /Home/About
controller = "Home" action = "About", color = "Red" /Home/About?color=Red

Problems with route value invalidation

The following code shows an example of a URL generation scheme that's not supported by routing:

app.MapControllerRoute(
    "default",
    "{culture}/{controller=Home}/{action=Index}/{id?}");

app.MapControllerRoute(
    "blog",
    "{culture}/{**slug}",
    new { controller = "Blog", action = "ReadPost" });

In the preceding code, the culture route parameter is used for localization. The desire is to have the culture parameter always accepted as an ambient value. However, the culture parameter is not accepted as an ambient value because of the way required values work:

Parse URL paths with LinkParser

The LinkParser class adds support for parsing a URL path into a set of route values. The ParsePathByEndpointName method takes an endpoint name and a URL path, and returns a set of route values extracted from the URL path.

In the following example controller, the GetProduct action uses a route template of api/Products/{id} and has a Name of GetProduct:

[ApiController]
[Route("api/[controller]")]
public class ProductsController : ControllerBase
{
    [HttpGet("{id}", Name = nameof(GetProduct))]
    public IActionResult GetProduct(string id)
    {
        // ...

In the same controller class, the AddRelatedProduct action expects a URL path, pathToRelatedProduct, which can be provided as a query-string parameter:

[HttpPost("{id}/Related")]
public IActionResult AddRelatedProduct(
    string id, string pathToRelatedProduct, [FromServices] LinkParser linkParser)
{
    var routeValues = linkParser.ParsePathByEndpointName(
        nameof(GetProduct), pathToRelatedProduct);
    var relatedProductId = routeValues?["id"];

    // ...

In the preceding example, the AddRelatedProduct action extracts the id route value from the URL path. For example, with a URL path of /api/Products/1, the relatedProductId value is set to 1. This approach allows the API's clients to use URL paths when referring to resources, without requiring knowledge of how such a URL is structured.

The following links provide information on how to configure endpoint metadata:

Host matching in routes with RequireHost

RequireHost applies a constraint to the route which requires the specified host. The RequireHost or [Host] parameter can be a:

Multiple parameters can be specified using RequireHost or [Host]. The constraint matches hosts valid for any of the parameters. For example, [Host("domain.com", "*.domain.com")] matches domain.com, www.domain.com, and subdomain.domain.com.

The following code uses RequireHost to require the specified host on the route:

app.MapGet("/", () => "Contoso").RequireHost("contoso.com");
app.MapGet("/", () => "AdventureWorks").RequireHost("adventure-works.com");

app.MapHealthChecks("/healthz").RequireHost("*:8080");

The following code uses the [Host] attribute on the controller to require any of the specified hosts:

[Host("contoso.com", "adventure-works.com")]
public class HostsController : Controller
{
    public IActionResult Index() =>
        View();

    [Host("example.com")]
    public IActionResult Example() =>
        View();
}

When the [Host] attribute is applied to both the controller and action method:

Performance guidance for routing

When an app has performance problems, routing is often suspected as the problem. The reason routing is suspected is that frameworks like controllers and Razor Pages report the amount of time spent inside the framework in their logging messages. When there's a significant difference between the time reported by controllers and the total time of the request:

Routing is performance tested using thousands of endpoints. It's unlikely that a typical app will encounter a performance problem just by being too large. The most common root cause of slow routing performance is usually a badly-behaving custom middleware.

This following code sample demonstrates a basic technique for narrowing down the source of delay:

var logger = app.Services.GetRequiredService<ILogger<Program>>();

app.Use(async (context, next) =>
{
    var stopwatch = Stopwatch.StartNew();
    await next(context);
    stopwatch.Stop();

    logger.LogInformation("Time 1: {ElapsedMilliseconds}ms", stopwatch.ElapsedMilliseconds);
});

app.UseRouting();

app.Use(async (context, next) =>
{
    var stopwatch = Stopwatch.StartNew();
    await next(context);
    stopwatch.Stop();

    logger.LogInformation("Time 2: {ElapsedMilliseconds}ms", stopwatch.ElapsedMilliseconds);
});

app.UseAuthorization();

app.Use(async (context, next) =>
{
    var stopwatch = Stopwatch.StartNew();
    await next(context);
    stopwatch.Stop();

    logger.LogInformation("Time 3: {ElapsedMilliseconds}ms", stopwatch.ElapsedMilliseconds);
});

app.MapGet("/", () => "Timing Test.");

To time routing:

This is a basic way to narrow down the delay when it's significant, for example, more than 10ms. Subtracting Time 2 from Time 1 reports the time spent inside the UseRouting middleware.

The following code uses a more compact approach to the preceding timing code:

public sealed class AutoStopwatch : IDisposable
{
    private readonly ILogger _logger;
    private readonly string _message;
    private readonly Stopwatch _stopwatch;
    private bool _disposed;

    public AutoStopwatch(ILogger logger, string message) =>
        (_logger, _message, _stopwatch) = (logger, message, Stopwatch.StartNew());

    public void Dispose()
    {
        if (_disposed)
        {
            return;
        }

        _logger.LogInformation("{Message}: {ElapsedMilliseconds}ms",
            _message, _stopwatch.ElapsedMilliseconds);

        _disposed = true;
    }
}
var logger = app.Services.GetRequiredService<ILogger<Program>>();
var timerCount = 0;

app.Use(async (context, next) =>
{
    using (new AutoStopwatch(logger, $"Time {++timerCount}"))
    {
        await next(context);
    }
});

app.UseRouting();

app.Use(async (context, next) =>
{
    using (new AutoStopwatch(logger, $"Time {++timerCount}"))
    {
        await next(context);
    }
});

app.UseAuthorization();

app.Use(async (context, next) =>
{
    using (new AutoStopwatch(logger, $"Time {++timerCount}"))
    {
        await next(context);
    }
});

app.MapGet("/", () => "Timing Test.");

Potentially expensive routing features

The following list provides some insight into routing features that are relatively expensive compared with basic route templates:

Guidance for large route tables

By default ASP.NET Core uses a routing algorithm that trades memory for CPU time. This has the nice effect that route matching time is dependent only on the length of the path to match and not the number of routes. However, this approach can be potentially problematic in some cases, when the app has a large number of routes (in the thousands) and there is a high amount of variable prefixes in the routes. For example, if the routes have parameters in early segments of the route, like {parameter}/some/literal.

It is unlikely for an app to run into a situation where this is a problem unless:

How to determine if an app is running into the large route table problem

How to address this issue

There are several techniques and optimizations can be applied to routes that will largely improve this scenario:

Guidance for library authors

This section contains guidance for library authors building on top of routing. These details are intended to ensure that app developers have a good experience using libraries and frameworks that extend routing.

Define endpoints

To create a framework that uses routing for URL matching, start by defining a user experience that builds on top of UseEndpoints.

DO build on top of IEndpointRouteBuilder. This allows users to compose your framework with other ASP.NET Core features without confusion. Every ASP.NET Core template includes routing. Assume routing is present and familiar for users.

// Your framework
app.MapMyFramework(...);

app.MapHealthChecks("/healthz");

DO return a sealed concrete type from a call to MapMyFramework(...) that implements IEndpointConventionBuilder. Most framework Map... methods follow this pattern. The IEndpointConventionBuilder interface:

Declaring your own type allows you to add your own framework-specific functionality to the builder. It's ok to wrap a framework-declared builder and forward calls to it.

// Your framework
app.MapMyFramework(...)
    .RequireAuthorization()
    .WithMyFrameworkFeature(awesome: true);

app.MapHealthChecks("/healthz");

CONSIDER writing your own EndpointDataSource. EndpointDataSource is the low-level primitive for declaring and updating a collection of endpoints. EndpointDataSource is a powerful API used by controllers and Razor Pages.

The routing tests have a basic example of a non-updating data source.

DO NOT attempt to register an EndpointDataSource by default. Require users to register your framework in UseEndpoints. The philosophy of routing is that nothing is included by default, and that UseEndpoints is the place to register endpoints.

Creating routing-integrated middleware

CONSIDER defining metadata types as an interface.

DO make it possible to use metadata types as an attribute on classes and methods.

public interface ICoolMetadata
{
    bool IsCool { get; }
}

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Method)]
public class CoolMetadataAttribute : Attribute, ICoolMetadata
{
    public bool IsCool => true;
}

Frameworks like controllers and Razor Pages support applying metadata attributes to types and methods. If you declare metadata types:

Declaring a metadata type as an interface adds another layer of flexibility:

DO make it possible to override metadata, as shown in the following example:

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Method)]
public class SuppressCoolMetadataAttribute : Attribute, ICoolMetadata
{
    public bool IsCool => false;
}

[CoolMetadata]
public class MyController : Controller
{
    public void MyCool() { }

    [SuppressCoolMetadata]
    public void Uncool() { }
}

The best way to follow these guidelines is to avoid defining marker metadata:

The metadata collection is ordered and supports overriding by priority. In the case of controllers, metadata on the action method is most specific.

DO make middleware useful with and without routing:

app.UseAuthorization(new AuthorizationPolicy() { ... });

// Your framework
app.MapMyFramework(...).RequireAuthorization();

As an example of this guideline, consider the UseAuthorization middleware. The authorization middleware allows you to pass in a fallback policy. The fallback policy, if specified, applies to both:

This makes the authorization middleware useful outside of the context of routing. The authorization middleware can be used for traditional middleware programming.

Debug diagnostics

For detailed routing diagnostic output, set Logging:LogLevel:Microsoft to Debug. In the development environment, set the log level in appsettings.Development.json:

{
  "Logging": {
    "LogLevel": {
      "Default": "Information",
      "Microsoft": "Debug",
      "Microsoft.Hosting.Lifetime": "Information"
    }
  }
}

Additional resources

Routing is responsible for matching incoming HTTP requests and dispatching those requests to the app's executable endpoints. Endpoints are the app's units of executable request-handling code. Endpoints are defined in the app and configured when the app starts. The endpoint matching process can extract values from the request's URL and provide those values for request processing. Using endpoint information from the app, routing is also able to generate URLs that map to endpoints.

Apps can configure routing using:

This document covers low-level details of ASP.NET Core routing. For information on configuring routing:

The endpoint routing system described in this document applies to ASP.NET Core 3.0 or later. For information on the previous routing system based on IRouter, select the ASP.NET Core 2.1 version using one of the following approaches:

View or download sample code (how to download)

The download samples for this document are enabled by a specific Startup class. To run a specific sample, modify Program.cs to call the desired Startup class.

Routing basics

All ASP.NET Core templates include routing in the generated code. Routing is registered in the middleware pipeline in Startup.Configure.

The following code shows a basic example of routing:

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
    if (env.IsDevelopment())
    {
        app.UseDeveloperExceptionPage();
    }

    app.UseRouting();

    app.UseEndpoints(endpoints =>
    {
        endpoints.MapGet("/", async context =>
        {
            await context.Response.WriteAsync("Hello World!");
        });
    });
}

Routing uses a pair of middleware, registered by UseRouting and UseEndpoints:

The preceding example includes a single route to code endpoint using the MapGet method:

Endpoint

The MapGet method is used to define an endpoint. An endpoint is something that can be:

Endpoints that can be matched and executed by the app are configured in UseEndpoints. For example, MapGet, MapPost, and similar methods connect request delegates to the routing system. Additional methods can be used to connect ASP.NET Core framework features to the routing system:

The following example shows routing with a more sophisticated route template:

app.UseEndpoints(endpoints =>
{
    endpoints.MapGet("/hello/{name:alpha}", async context =>
    {
        var name = context.Request.RouteValues["name"];
        await context.Response.WriteAsync($"Hello {name}!");
    });
});

The string /hello/{name:alpha} is a route template. It is used to configure how the endpoint is matched. In this case, the template matches:

The second segment of the URL path, {name:alpha}:

The endpoint routing system described in this document is new as of ASP.NET Core 3.0. However, all versions of ASP.NET Core support the same set of route template features and route constraints.

The following example shows routing with health checks and authorization:

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
    if (env.IsDevelopment())
    {
        app.UseDeveloperExceptionPage();
    }

    // Matches request to an endpoint.
    app.UseRouting();

    // Endpoint aware middleware. 
    // Middleware can use metadata from the matched endpoint.
    app.UseAuthentication();
    app.UseAuthorization();

    // Execute the matched endpoint.
    app.UseEndpoints(endpoints =>
    {
        // Configure the Health Check endpoint and require an authorized user.
        endpoints.MapHealthChecks("/healthz").RequireAuthorization();

        // Configure another endpoint, no authorization requirements.
        endpoints.MapGet("/", async context =>
        {
            await context.Response.WriteAsync("Hello World!");
        });
    });
}

If you would like to see code comments translated to languages other than English, let us know in this GitHub discussion issue.

The preceding example demonstrates how:

The MapHealthChecks call adds a health check endpoint. Chaining RequireAuthorization on to this call attaches an authorization policy to the endpoint.

Calling UseAuthentication and UseAuthorization adds the authentication and authorization middleware. These middleware are placed between UseRouting and UseEndpoints so that they can:

Endpoint metadata

In the preceding example, there are two endpoints, but only the health check endpoint has an authorization policy attached. If the request matches the health check endpoint, /healthz, an authorization check is performed. This demonstrates that endpoints can have extra data attached to them. This extra data is called endpoint metadata:

Routing concepts

The routing system builds on top of the middleware pipeline by adding the powerful endpoint concept. Endpoints represent units of the app's functionality that are distinct from each other in terms of routing, authorization, and any number of ASP.NET Core's systems.

ASP.NET Core endpoint definition

An ASP.NET Core endpoint is:

The following code shows how to retrieve and inspect the endpoint matching the current request:

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
    if (env.IsDevelopment())
    {
        app.UseDeveloperExceptionPage();
    }

    app.UseRouting();

    app.Use(next => context =>
    {
        var endpoint = context.GetEndpoint();
        if (endpoint is null)
        {
            return Task.CompletedTask;
        }
        
        Console.WriteLine($"Endpoint: {endpoint.DisplayName}");

        if (endpoint is RouteEndpoint routeEndpoint)
        {
            Console.WriteLine("Endpoint has route pattern: " +
                routeEndpoint.RoutePattern.RawText);
        }

        foreach (var metadata in endpoint.Metadata)
        {
            Console.WriteLine($"Endpoint has metadata: {metadata}");
        }

        return Task.CompletedTask;
    });

    app.UseEndpoints(endpoints =>
    {
        endpoints.MapGet("/", async context =>
        {
            await context.Response.WriteAsync("Hello World!");
        });
    });
}

The endpoint, if selected, can be retrieved from the HttpContext. Its properties can be inspected. Endpoint objects are immutable and cannot be modified after creation. The most common type of endpoint is a RouteEndpoint. RouteEndpoint includes information that allows it to be selected by the routing system.

In the preceding code, app.Use configures an in-line middleware.

The following code shows that, depending on where app.Use is called in the pipeline, there may not be an endpoint:

// Location 1: before routing runs, endpoint is always null here
app.Use(next => context =>
{
    Console.WriteLine($"1. Endpoint: {context.GetEndpoint()?.DisplayName ?? "(null)"}");
    return next(context);
});

app.UseRouting();

// Location 2: after routing runs, endpoint will be non-null if routing found a match
app.Use(next => context =>
{
    Console.WriteLine($"2. Endpoint: {context.GetEndpoint()?.DisplayName ?? "(null)"}");
    return next(context);
});

app.UseEndpoints(endpoints =>
{
    // Location 3: runs when this endpoint matches
    endpoints.MapGet("/", context =>
    {
        Console.WriteLine(
            $"3. Endpoint: {context.GetEndpoint()?.DisplayName ?? "(null)"}");
        return Task.CompletedTask;
    }).WithDisplayName("Hello");
});

// Location 4: runs after UseEndpoints - will only run if there was no match
app.Use(next => context =>
{
    Console.WriteLine($"4. Endpoint: {context.GetEndpoint()?.DisplayName ?? "(null)"}");
    return next(context);
});

This preceding sample adds Console.WriteLine statements that display whether or not an endpoint has been selected. For clarity, the sample assigns a display name to the provided / endpoint.

Running this code with a URL of / displays:

1. Endpoint: (null)
2. Endpoint: Hello
3. Endpoint: Hello

Running this code with any other URL displays:

1. Endpoint: (null)
2. Endpoint: (null)
4. Endpoint: (null)

This output demonstrates that:

The UseRouting middleware uses the SetEndpoint method to attach the endpoint to the current context. It's possible to replace the UseRouting middleware with custom logic and still get the benefits of using endpoints. Endpoints are a low-level primitive like middleware, and aren't coupled to the routing implementation. Most apps don't need to replace UseRouting with custom logic.

The UseEndpoints middleware is designed to be used in tandem with the UseRouting middleware. The core logic to execute an endpoint isn't complicated. Use GetEndpoint to retrieve the endpoint, and then invoke its RequestDelegate property.

The following code demonstrates how middleware can influence or react to routing:

public class IntegratedMiddlewareStartup
{ 
    public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
    {
        if (env.IsDevelopment())
        {
            app.UseDeveloperExceptionPage();
        }

        // Location 1: Before routing runs. Can influence request before routing runs.
        app.UseHttpMethodOverride();

        app.UseRouting();

        // Location 2: After routing runs. Middleware can match based on metadata.
        app.Use(next => context =>
        {
            var endpoint = context.GetEndpoint();
            if (endpoint?.Metadata.GetMetadata<AuditPolicyAttribute>()?.NeedsAudit
                                                                            == true)
            {
                Console.WriteLine($"ACCESS TO SENSITIVE DATA AT: {DateTime.UtcNow}");
            }

            return next(context);
        });

        app.UseEndpoints(endpoints =>
        {         
            endpoints.MapGet("/", async context =>
            {
                await context.Response.WriteAsync("Hello world!");
            });

            // Using metadata to configure the audit policy.
            endpoints.MapGet("/sensitive", async context =>
            {
                await context.Response.WriteAsync("sensitive data");
            })
            .WithMetadata(new AuditPolicyAttribute(needsAudit: true));
        });

    } 
}

public class AuditPolicyAttribute : Attribute
{
    public AuditPolicyAttribute(bool needsAudit)
    {
        NeedsAudit = needsAudit;
    }

    public bool NeedsAudit { get; }
}

The preceding example demonstrates two important concepts:

The preceding code shows an example of a custom middleware that supports per-endpoint policies. The middleware writes an audit log of access to sensitive data to the console. The middleware can be configured to audit an endpoint with the AuditPolicyAttribute metadata. This sample demonstrates an opt-in pattern where only endpoints that are marked as sensitive are audited. It's possible to define this logic in reverse, auditing everything that isn't marked as safe, for example. The endpoint metadata system is flexible. This logic could be designed in whatever way suits the use case.

The preceding sample code is intended to demonstrate the basic concepts of endpoints. The sample is not intended for production use. A more complete version of an audit log middleware would:

The audit policy metadata AuditPolicyAttribute is defined as an Attribute for easier use with class-based frameworks such as controllers and SignalR. When using route to code:

The best practices for metadata types are to define them either as interfaces or attributes. Interfaces and attributes allow code reuse. The metadata system is flexible and doesn't impose any limitations.

Comparing a terminal middleware and routing

The following code sample contrasts using middleware with using routing:

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
    if (env.IsDevelopment())
    {
        app.UseDeveloperExceptionPage();
    }

    // Approach 1: Writing a terminal middleware.
    app.Use(next => async context =>
    {
        if (context.Request.Path == "/")
        {
            await context.Response.WriteAsync("Hello terminal middleware!");
            return;
        }

        await next(context);
    });

    app.UseRouting();

    app.UseEndpoints(endpoints =>
    {
        // Approach 2: Using routing.
        endpoints.MapGet("/Movie", async context =>
        {
            await context.Response.WriteAsync("Hello routing!");
        });
    });
}

The style of middleware shown with Approach 1: is terminal middleware. It's called terminal middleware because it does a matching operation:

It's called terminal middleware because it terminates the search, executes some functionality, and then returns.

Comparing a terminal middleware and routing:

An endpoint defines both:

Terminal middleware can be an effective tool, but can require:

Consider integrating with routing before writing a terminal middleware.

Existing terminal middleware that integrates with Map or MapWhen can usually be turned into a routing aware endpoint. MapHealthChecks demonstrates the pattern for router-ware:

The following code shows use of MapHealthChecks:

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
    if (env.IsDevelopment())
    {
        app.UseDeveloperExceptionPage();
    }

    // Matches request to an endpoint.
    app.UseRouting();

    // Endpoint aware middleware. 
    // Middleware can use metadata from the matched endpoint.
    app.UseAuthentication();
    app.UseAuthorization();

    // Execute the matched endpoint.
    app.UseEndpoints(endpoints =>
    {
        // Configure the Health Check endpoint and require an authorized user.
        endpoints.MapHealthChecks("/healthz").RequireAuthorization();

        // Configure another endpoint, no authorization requirements.
        endpoints.MapGet("/", async context =>
        {
            await context.Response.WriteAsync("Hello World!");
        });
    });
}

The preceding sample shows why returning the builder object is important. Returning the builder object allows the app developer to configure policies such as authorization for the endpoint. In this example, the health checks middleware has no direct integration with the authorization system.

The metadata system was created in response to the problems encountered by extensibility authors using terminal middleware. It's problematic for each middleware to implement its own integration with the authorization system.

URL matching

When a routing middleware executes, it sets an Endpoint and route values to a request feature on the HttpContext from the current request:

Middleware runs after the routing middleware can inspect the endpoint and take action. For example, an authorization middleware can interrogate the endpoint's metadata collection for an authorization policy. After all of the middleware in the request processing pipeline is executed, the selected endpoint's delegate is invoked.

The routing system in endpoint routing is responsible for all dispatching decisions. Because the middleware applies policies based on the selected endpoint, it's important that:

Warning

For backward-compatibility, when a Controller or Razor Pages endpoint delegate is executed, the properties of RouteContext.RouteData are set to appropriate values based on the request processing performed thus far.

The RouteContext type will be marked obsolete in a future release:

URL matching operates in a configurable set of phases. In each phase, the output is a set of matches. The set of matches can be narrowed down further by the next phase. The routing implementation does not guarantee a processing order for matching endpoints. All possible matches are processed at once. The URL matching phases occur in the following order. ASP.NET Core:

  1. Processes the URL path against the set of endpoints and their route templates, collecting all of the matches.
  2. Takes the preceding list and removes matches that fail with route constraints applied.
  3. Takes the preceding list and removes matches that fail the set of MatcherPolicy instances.
  4. Uses the EndpointSelector to make a final decision from the preceding list.

The list of endpoints is prioritized according to:

All matching endpoints are processed in each phase until the EndpointSelector is reached. The EndpointSelector is the final phase. It chooses the highest priority endpoint from the matches as the best match. If there are other matches with the same priority as the best match, an ambiguous match exception is thrown.

The route precedence is computed based on a more specific route template being given a higher priority. For example, consider the templates /hello and /{message}:

In general, route precedence does a good job of choosing the best match for the kinds of URL schemes used in practice. Use Order only when necessary to avoid an ambiguity.

Due to the kinds of extensibility provided by routing, it isn't possible for the routing system to compute ahead of time the ambiguous routes. Consider an example such as the route templates /{message:alpha} and /{message:int}:

Warning

The order of operations inside UseEndpoints doesn't influence the behavior of routing, with one exception. MapControllerRoute and MapAreaRoute automatically assign an order value to their endpoints based on the order they are invoked. This simulates long-time behavior of controllers without the routing system providing the same guarantees as older routing implementations.

In the legacy implementation of routing, it's possible to implement routing extensibility that has a dependency on the order in which routes are processed. Endpoint routing in ASP.NET Core 3.0 or later:

Route template precedence and endpoint selection order

Route template precedence is a system that assigns each route template a value based on how specific it is. Route template precedence:

For example, consider templates /Products/List and /Products/{id}. It would be reasonable to assume that /Products/List is a better match than /Products/{id} for the URL path /Products/List. This works because the literal segment /List is considered to have better precedence than the parameter segment /{id}.

The details of how precedence works are coupled to how route templates are defined:

See the source code on GitHub for a reference of exact values.

URL generation concepts

URL generation:

Endpoint routing includes the LinkGenerator API. LinkGenerator is a singleton service available from DI. The LinkGenerator API can be used outside of the context of an executing request. Mvc.IUrlHelper and scenarios that rely on IUrlHelper, such as Tag Helpers, HTML Helpers, and Action Results, use the LinkGenerator API internally to provide link generating capabilities.

The link generator is backed by the concept of an address and address schemes. An address scheme is a way of determining the endpoints that should be considered for link generation. For example, the route name and route values scenarios many users are familiar with from controllers and Razor Pages are implemented as an address scheme.

The link generator can link to controllers and Razor Pages via the following extension methods:

Overloads of these methods accept arguments that include the HttpContext. These methods are functionally equivalent to Url.Action and Url.Page, but offer additional flexibility and options.

The GetPath* methods are most similar to Url.Action and Url.Page, in that they generate a URI containing an absolute path. The GetUri* methods always generate an absolute URI containing a scheme and host. The methods that accept an HttpContext generate a URI in the context of the executing request. The ambient route values, URL base path, scheme, and host from the executing request are used unless overridden.

LinkGenerator is called with an address. Generating a URI occurs in two steps:

  1. An address is bound to a list of endpoints that match the address.
  2. Each endpoint's RoutePattern is evaluated until a route pattern that matches the supplied values is found. The resulting output is combined with the other URI parts supplied to the link generator and returned.

The methods provided by LinkGenerator support standard link generation capabilities for any type of address. The most convenient way to use the link generator is through extension methods that perform operations for a specific address type:

Extension Method Description
GetPathByAddress Generates a URI with an absolute path based on the provided values.
GetUriByAddress Generates an absolute URI based on the provided values.

Warning

Pay attention to the following implications of calling LinkGenerator methods:

Middleware example

In the following example, a middleware uses the LinkGenerator API to create a link to an action method that lists store products. Using the link generator by injecting it into a class and calling GenerateLink is available to any class in an app:

public class ProductsLinkMiddleware
{
    private readonly LinkGenerator _linkGenerator;

    public ProductsLinkMiddleware(RequestDelegate next, LinkGenerator linkGenerator)
    {
        _linkGenerator = linkGenerator;
    }

    public async Task InvokeAsync(HttpContext httpContext)
    {
        var url = _linkGenerator.GetPathByAction("ListProducts", "Store");

        httpContext.Response.ContentType = "text/plain";

        await httpContext.Response.WriteAsync($"Go to {url} to see our products.");
    }
}

Route template reference

Tokens within {} define route parameters that are bound if the route is matched. More than one route parameter can be defined in a route segment, but route parameters must be separated by a literal value. For example, {controller=Home}{action=Index} isn't a valid route, since there's no literal value between {controller} and {action}. Route parameters must have a name and may have additional attributes specified.

Literal text other than route parameters (for example, {id}) and the path separator / must match the text in the URL. Text matching is case-insensitive and based on the decoded representation of the URL's path. To match a literal route parameter delimiter { or }, escape the delimiter by repeating the character. For example {{ or }}.

Asterisk * or double asterisk **:

Warning

A catch-all parameter may match routes incorrectly due to a bug in routing. Apps impacted by this bug have the following characteristics:

See GitHub bugs 18677 and 16579 for example cases that hit this bug.

An opt-in fix for this bug is contained in .NET Core 3.1.301 or later SDK. The following code sets an internal switch that fixes this bug:

public static void Main(string[] args)
{
   AppContext.SetSwitch("Microsoft.AspNetCore.Routing.UseCorrectCatchAllBehavior", 
                         true);
   CreateHostBuilder(args).Build().Run();
}
// Remaining code removed for brevity.

Catch-all parameters can also match the empty string.

The catch-all parameter escapes the appropriate characters when the route is used to generate a URL, including path separator / characters. For example, the route foo/{*path} with route values { path = "my/path" } generates foo/my%2Fpath. Note the escaped forward slash. To round-trip path separator characters, use the ** route parameter prefix. The route foo/{**path} with { path = "my/path" } generates foo/my/path.

URL patterns that attempt to capture a file name with an optional file extension have additional considerations. For example, consider the template files/{filename}.{ext?}. When values for both filename and ext exist, both values are populated. If only a value for filename exists in the URL, the route matches because the trailing . is optional. The following URLs match this route:

Route parameters may have default values designated by specifying the default value after the parameter name separated by an equals sign (=). For example, {controller=Home} defines Home as the default value for controller. The default value is used if no value is present in the URL for the parameter. Route parameters are made optional by appending a question mark (?) to the end of the parameter name. For example, id?. The difference between optional values and default route parameters is:

Route parameters may have constraints that must match the route value bound from the URL. Adding : and constraint name after the route parameter name specifies an inline constraint on a route parameter. If the constraint requires arguments, they're enclosed in parentheses (...) after the constraint name. Multiple inline constraints can be specified by appending another : and constraint name.

The constraint name and arguments are passed to the IInlineConstraintResolver service to create an instance of IRouteConstraint to use in URL processing. For example, the route template blog/{article:minlength(10)} specifies a minlength constraint with the argument 10. For more information on route constraints and a list of the constraints provided by the framework, see the Route constraint reference section.

Route parameters may also have parameter transformers. Parameter transformers transform a parameter's value when generating links and matching actions and pages to URLs. Like constraints, parameter transformers can be added inline to a route parameter by adding a : and transformer name after the route parameter name. For example, the route template blog/{article:slugify} specifies a slugify transformer. For more information on parameter transformers, see the Parameter transformer reference section.

The following table demonstrates example route templates and their behavior:

Route Template Example Matching URI The request URI…
hello /hello Only matches the single path /hello.
{Page=Home} / Matches and sets Page to Home.
{Page=Home} /Contact Matches and sets Page to Contact.
{controller}/{action}/{id?} /Products/List Maps to the Products controller and List action.
{controller}/{action}/{id?} /Products/Details/123 Maps to the Products controller and Details action withid set to 123.
{controller=Home}/{action=Index}/{id?} / Maps to the Home controller and Index method. id is ignored.
{controller=Home}/{action=Index}/{id?} /Products Maps to the Products controller and Index method. id is ignored.

Using a template is generally the simplest approach to routing. Constraints and defaults can also be specified outside the route template.

Complex segments

Complex segments are processed by matching up literal delimiters from right to left in a non-greedy way. For example, [Route("/a{b}c{d}")] is a complex segment. Complex segments work in a particular way that must be understood to use them successfully. The example in this section demonstrates why complex segments only really work well when the delimiter text doesn't appear inside the parameter values. Using a regex and then manually extracting the values is needed for more complex cases.

This is a summary of the steps that routing performs with the template /a{b}c{d} and the URL path /abcd. The | is used to help visualize how the algorithm works:

Here's an example of a negative case using the same template /a{b}c{d} and the URL path /aabcd. The | is used to help visualize how the algorithm works. This case isn't a match, which is explained by the same algorithm:

Since the matching algorithm is non-greedy:

Regular expressions provide much more control over their matching behavior.

Greedy matching, also known as lazy matching, matches the largest possible string. Non-greedy matches the smallest possible string.

Route constraint reference

Route constraints execute when a match has occurred to the incoming URL and the URL path is tokenized into route values. Route constraints generally inspect the route value associated via the route template and make a true or false decision about whether the value is acceptable. Some route constraints use data outside the route value to consider whether the request can be routed. For example, the HttpMethodRouteConstraint can accept or reject a request based on its HTTP verb. Constraints are used in routing requests and link generation.

Warning

Don't use constraints for input validation. If constraints are used for input validation, invalid input results in a 404 Not Found response. Invalid input should produce a 400 Bad Request with an appropriate error message. Route constraints are used to disambiguate similar routes, not to validate the inputs for a particular route.

The following table demonstrates example route constraints and their expected behavior:

constraint Example Example Matches Notes
int {id:int} 123456789, -123456789 Matches any integer
bool {active:bool} true, FALSE Matches true or false. Case-insensitive
datetime {dob:datetime} 2016-12-31, 2016-12-31 7:32pm Matches a valid DateTime value in the invariant culture. See preceding warning.
decimal {price:decimal} 49.99, -1,000.01 Matches a valid decimal value in the invariant culture. See preceding warning.
double {weight:double} 1.234, -1,001.01e8 Matches a valid double value in the invariant culture. See preceding warning.
float {weight:float} 1.234, -1,001.01e8 Matches a valid float value in the invariant culture. See preceding warning.
guid {id:guid} CD2C1638-1638-72D5-1638-DEADBEEF1638 Matches a valid Guid value
long {ticks:long} 123456789, -123456789 Matches a valid long value
minlength(value) {username:minlength(4)} Rick String must be at least 4 characters
maxlength(value) {filename:maxlength(8)} MyFile String must be no more than 8 characters
length(length) {filename:length(12)} somefile.txt String must be exactly 12 characters long
length(min,max) {filename:length(8,16)} somefile.txt String must be at least 8 and no more than 16 characters long
min(value) {age:min(18)} 19 Integer value must be at least 18
max(value) {age:max(120)} 91 Integer value must be no more than 120
range(min,max) {age:range(18,120)} 91 Integer value must be at least 18 but no more than 120
alpha {name:alpha} Rick String must consist of one or more alphabetical characters, a-z and case-insensitive.
regex(expression) {ssn:regex(^\\d{{3}}-\\d{{2}}-\\d{{4}}$)} 123-45-6789 String must match the regular expression. See tips about defining a regular expression.
required {name:required} Rick Used to enforce that a non-parameter value is present during URL generation

Multiple, colon delimited constraints can be applied to a single parameter. For example, the following constraint restricts a parameter to an integer value of 1 or greater:

[Route("users/{id:int:min(1)}")]
public User GetUserById(int id) { }

Warning

Route constraints that verify the URL and are converted to a CLR type always use the invariant culture. For example, conversion to the CLR type int or DateTime. These constraints assume that the URL is not localizable. The framework-provided route constraints don't modify the values stored in route values. All route values parsed from the URL are stored as strings. For example, the float constraint attempts to convert the route value to a float, but the converted value is used only to verify it can be converted to a float.

Regular expressions in constraints

Regular expressions can be specified as inline constraints using the regex(...) route constraint. Methods in the MapControllerRoute family also accept an object literal of constraints. If that form is used, string values are interpreted as regular expressions.

The following code uses an inline regex constraint:

app.UseEndpoints(endpoints =>
{
    endpoints.MapGet("{message:regex(^\\d{{3}}-\\d{{2}}-\\d{{4}}$)}",
        context => 
        {
            return context.Response.WriteAsync("inline-constraint match");
        });
 });

The following code uses an object literal to specify a regex constraint:

app.UseEndpoints(endpoints =>
{
    endpoints.MapControllerRoute(
        name: "people",
        pattern: "People/{ssn}",
        constraints: new { ssn = "^\\d{3}-\\d{2}-\\d{4}$", },
        defaults: new { controller = "People", action = "List", });
});

The ASP.NET Core framework adds RegexOptions.IgnoreCase | RegexOptions.Compiled | RegexOptions.CultureInvariant to the regular expression constructor. See RegexOptions for a description of these members.

Regular expressions use delimiters and tokens similar to those used by routing and the C# language. Regular expression tokens must be escaped. To use the regular expression ^\d{3}-\d{2}-\d{4}$ in an inline constraint, use one of the following:

To escape routing parameter delimiter characters {, }, [, ], double the characters in the expression, for example, {{, }}, [[, ]]. The following table shows a regular expression and its escaped version:

Regular expression Escaped regular expression
^\d{3}-\d{2}-\d{4}$ ^\\d{{3}}-\\d{{2}}-\\d{{4}}$
^[a-z]{2}$ ^[[a-z]]{{2}}$

Regular expressions used in routing often start with the ^ character and match the starting position of the string. The expressions often end with the $ character and match the end of the string. The ^ and $ characters ensure that the regular expression matches the entire route parameter value. Without the ^ and $ characters, the regular expression matches any substring within the string, which is often undesirable. The following table provides examples and explains why they match or fail to match:

Expression String Match Comment
[a-z]{2} hello Yes Substring matches
[a-z]{2} 123abc456 Yes Substring matches
[a-z]{2} mz Yes Matches expression
[a-z]{2} MZ Yes Not case sensitive
^[a-z]{2}$ hello No See ^ and $ above
^[a-z]{2}$ 123abc456 No See ^ and $ above

For more information on regular expression syntax, see .NET Framework Regular Expressions.

To constrain a parameter to a known set of possible values, use a regular expression. For example, {action:regex(^(list|get|create)$)} only matches the action route value to list, get, or create. If passed into the constraints dictionary, the string ^(list|get|create)$ is equivalent. Constraints that are passed in the constraints dictionary that don't match one of the known constraints are also treated as regular expressions. Constraints that are passed within a template that don't match one of the known constraints are not treated as regular expressions.

Custom route constraints

Custom route constraints can be created by implementing the IRouteConstraint interface. The IRouteConstraint interface contains Match, which returns true if the constraint is satisfied and false otherwise.

Custom route constraints are rarely needed. Before implementing a custom route constraint, consider alternatives, such as model binding.

The ASP.NET Core Constraints folder provides good examples of creating constraints. For example, GuidRouteConstraint.

To use a custom IRouteConstraint, the route constraint type must be registered with the app's ConstraintMap in the service container. A ConstraintMap is a dictionary that maps route constraint keys to IRouteConstraint implementations that validate those constraints. An app's ConstraintMap can be updated in Startup.ConfigureServices either as part of a services.AddRouting call or by configuring RouteOptions directly with services.Configure<RouteOptions>. For example:

public void ConfigureServices(IServiceCollection services)
{
    services.AddControllers();

    services.AddRouting(options =>
    {
        options.ConstraintMap.Add("customName", typeof(MyCustomConstraint));
    });
}

The preceding constraint is applied in the following code:

[Route("api/[controller]")]
[ApiController]
public class TestController : ControllerBase
{
    // GET /api/test/3
    [HttpGet("{id:customName}")]
    public IActionResult Get(string id)
    {
        return ControllerContext.MyDisplayRouteInfo(id);
    }

    // GET /api/test/my/3
    [HttpGet("my/{id:customName}")]
    public IActionResult Get(int id)
    {
        return ControllerContext.MyDisplayRouteInfo(id);
    }
}

MyDisplayRouteInfo is provided by the Rick.Docs.Samples.RouteInfo NuGet package and displays route information.

The implementation of MyCustomConstraint prevents 0 being applied to a route parameter:

class MyCustomConstraint : IRouteConstraint
{
    private Regex _regex;

    public MyCustomConstraint()
    {
        _regex = new Regex(@"^[1-9]*$",
                            RegexOptions.CultureInvariant | RegexOptions.IgnoreCase,
                            TimeSpan.FromMilliseconds(100));
    }
    public bool Match(HttpContext httpContext, IRouter route, string routeKey,
                      RouteValueDictionary values, RouteDirection routeDirection)
    {
        if (values.TryGetValue(routeKey, out object value))
        {
            var parameterValueString = Convert.ToString(value,
                                                        CultureInfo.InvariantCulture);
            if (parameterValueString == null)
            {
                return false;
            }

            return _regex.IsMatch(parameterValueString);
        }

        return false;
    }
}

The preceding code:

The following code is a better approach to preventing an id containing a 0 from being processed:

[HttpGet("{id}")]
public IActionResult Get(string id)
{
    if (id.Contains('0'))
    {
        return StatusCode(StatusCodes.Status406NotAcceptable);
    }

    return ControllerContext.MyDisplayRouteInfo(id);
}

The preceding code has the following advantages over the MyCustomConstraint approach:

Parameter transformer reference

Parameter transformers:

For example, a custom slugify parameter transformer in route pattern blog\{article:slugify} with Url.Action(new { article = "MyTestArticle" }) generates blog\my-test-article.

Consider the following IOutboundParameterTransformer implementation:

public class SlugifyParameterTransformer : IOutboundParameterTransformer
{
    public string TransformOutbound(object value)
    {
        if (value == null) { return null; }

        return Regex.Replace(value.ToString(), 
                             "([a-z])([A-Z])",
                             "$1-$2",
                             RegexOptions.CultureInvariant,
                             TimeSpan.FromMilliseconds(100)).ToLowerInvariant();
    }
}

To use a parameter transformer in a route pattern, configure it using ConstraintMap in Startup.ConfigureServices:

public void ConfigureServices(IServiceCollection services)
{
    services.AddControllers();

    services.AddRouting(options =>
    {
        options.ConstraintMap["slugify"] = typeof(SlugifyParameterTransformer);
    });
}

The ASP.NET Core framework uses parameter transformers to transform the URI where an endpoint resolves. For example, parameter transformers transform the route values used to match an area, controller, action, and page.

routes.MapControllerRoute(
    name: "default",
    template: "{controller:slugify=Home}/{action:slugify=Index}/{id?}");

With the preceding route template, the action SubscriptionManagementController.GetAll is matched with the URI /subscription-management/get-all. A parameter transformer doesn't change the route values used to generate a link. For example, Url.Action("GetAll", "SubscriptionManagement") outputs /subscription-management/get-all.

ASP.NET Core provides API conventions for using parameter transformers with generated routes:

URL generation reference

This section contains a reference for the algorithm implemented by URL generation. In practice, most complex examples of URL generation use controllers or Razor Pages. See routing in controllers for additional information.

The URL generation process begins with a call to LinkGenerator.GetPathByAddress or a similar method. The method is provided with an address, a set of route values, and optionally information about the current request from HttpContext.

The first step is to use the address to resolve a set of candidate endpoints using an IEndpointAddressScheme that matches the address's type.

Once the set of candidates is found by the address scheme, the endpoints are ordered and processed iteratively until a URL generation operation succeeds. URL generation does not check for ambiguities, the first result returned is the final result.

Troubleshooting URL generation with logging

The first step in troubleshooting URL generation is setting the logging level of Microsoft.AspNetCore.Routing to TRACE. LinkGenerator logs many details about its processing which can be useful to troubleshoot problems.

See URL generation reference for details on URL generation.

Addresses

Addresses are the concept in URL generation used to bind a call into the link generator to a set of candidate endpoints.

Addresses are an extensible concept that come with two implementations by default:

The role of the address scheme is to make the association between the address and matching endpoints by arbitrary criteria:

Ambient values and explicit values

From the current request, routing accesses the route values of the current request HttpContext.Request.RouteValues. The values associated with the current request are referred to as the ambient values. For the purpose of clarity, the documentation refers to the route values passed in to methods as explicit values.

The following example shows ambient values and explicit values. It provides ambient values from the current request and explicit values: { id = 17, }:

public class WidgetController : Controller
{
    private readonly LinkGenerator _linkGenerator;

    public WidgetController(LinkGenerator linkGenerator)
    {
        _linkGenerator = linkGenerator;
    }

    public IActionResult Index()
    {
        var url = _linkGenerator.GetPathByAction(HttpContext,
                                                 null, null,
                                                 new { id = 17, });
        return Content(url);
    }

The preceding code:

The following code provides no ambient values and explicit values: { controller = "Home", action = "Subscribe", id = 17, }:

public IActionResult Index2()
{
    var url = _linkGenerator.GetPathByAction("Subscribe", "Home",
                                             new { id = 17, });
    return Content(url);
}

The preceding method returns /Home/Subscribe/17

The following code in the WidgetController returns /Widget/Subscribe/17:

var url = _linkGenerator.GetPathByAction("Subscribe", null,
                                         new { id = 17, });

The following code provides the controller from ambient values in the current request and explicit values: { action = "Edit", id = 17, }:

public class GadgetController : Controller
{
    public IActionResult Index()
    {
        var url = Url.Action("Edit", new { id = 17, });
        return Content(url);
    }

In the preceding code:

The following code provides ambient values from the current request and explicit values: { page = "./Edit, id = 17, }:

public class IndexModel : PageModel
{
    public void OnGet()
    {
        var url = Url.Page("./Edit", new { id = 17, });
        ViewData["URL"] = url;
    }
}

The preceding code sets url to /Edit/17 when the Edit Razor Page contains the following page directive:

@page "{id:int}"

If the Edit page doesn't contain the "{id:int}" route template, url is /Edit?id=17.

The behavior of MVC's IUrlHelper adds a layer of complexity in addition to the rules described here:

Users are often surprised by the behavioral details of ambient values, because MVC doesn't seem to follow its own rules. For historical and compatibility reasons, certain route values such as action, controller, page, and handler have their own special-case behavior.

The equivalent functionality provided by LinkGenerator.GetPathByAction and LinkGenerator.GetPathByPage duplicates these anomalies of IUrlHelper for compatibility.

URL generation process

Once the set of candidate endpoints are found, the URL generation algorithm:

The first step in this process is called route value invalidation. Route value invalidation is the process by which routing decides which route values from the ambient values should be used and which should be ignored. Each ambient value is considered and either combined with the explicit values, or ignored.

The best way to think about the role of ambient values is that they attempt to save application developers typing, in some common cases. Traditionally, the scenarios where ambient values are helpful are related to MVC:

Calls to LinkGenerator or IUrlHelper that return null are usually caused by not understanding route value invalidation. Troubleshoot route value invalidation by explicitly specifying more of the route values to see if that solves the problem.

Route value invalidation works on the assumption that the app's URL scheme is hierarchical, with a hierarchy formed from left-to-right. Consider the basic controller route template {controller}/{action}/{id?} to get an intuitive sense of how this works in practice. A change to a value invalidates all of the route values that appear to the right. This reflects the assumption about hierarchy. If the app has an ambient value for id, and the operation specifies a different value for the controller:

Some examples demonstrating this principle:

This process is further complicated by the existence of attribute routes and dedicated conventional routes. Controller conventional routes such as {controller}/{action}/{id?} specify a hierarchy using route parameters. For dedicated conventional routes and attribute routes to controllers and Razor Pages:

For these cases, URL generation defines the required values concept. Endpoints created by controllers and Razor Pages have required values specified that allow route value invalidation to work.

The route value invalidation algorithm in detail:

At this point, the URL generation operation is ready to evaluate route constraints. The set of accepted values is combined with the parameter default values, which is provided to constraints. If the constraints all pass, the operation continues.

Next, the accepted values can be used to expand the route template. The route template is processed:

Values explicitly provided that don't match a segment of the route are added to the query string. The following table shows the result when using the route template {controller}/{action}/{id?}.

Ambient Values Explicit Values Result
controller = "Home" action = "About" /Home/About
controller = "Home" controller = "Order", action = "About" /Order/About
controller = "Home", color = "Red" action = "About" /Home/About
controller = "Home" action = "About", color = "Red" /Home/About?color=Red

Problems with route value invalidation

As of ASP.NET Core 3.0, some URL generation schemes used in earlier ASP.NET Core versions don't work well with URL generation. The ASP.NET Core team plans to add features to address these needs in a future release. For now the best solution is to use legacy routing.

The following code shows an example of a URL generation scheme that's not supported by routing.

app.UseEndpoints(endpoints =>
{
    endpoints.MapControllerRoute("default", 
                                     "{culture}/{controller=Home}/{action=Index}/{id?}");
    endpoints.MapControllerRoute("blog", "{culture}/{**slug}", 
                                      new { controller = "Blog", action = "ReadPost", });
});

In the preceding code, the culture route parameter is used for localization. The desire is to have the culture parameter always accepted as an ambient value. However, the culture parameter is not accepted as an ambient value because of the way required values work:

The following links provide information on configuring endpoint metadata:

Host matching in routes with RequireHost

RequireHost applies a constraint to the route which requires the specified host. The RequireHost or [Host] parameter can be:

Multiple parameters can be specified using RequireHost or [Host]. The constraint matches hosts valid for any of the parameters. For example, [Host("domain.com", "*.domain.com")] matches domain.com, www.domain.com, and subdomain.domain.com.

The following code uses RequireHost to require the specified host on the route:

public void Configure(IApplicationBuilder app)
{
    app.UseRouting();

    app.UseEndpoints(endpoints =>
    {
        endpoints.MapGet("/", context => context.Response.WriteAsync("Hi Contoso!"))
            .RequireHost("contoso.com");
        endpoints.MapGet("/", context => context.Response.WriteAsync("AdventureWorks!"))
            .RequireHost("adventure-works.com");
        endpoints.MapHealthChecks("/healthz").RequireHost("*:8080");
    });
}

The following code uses the [Host] attribute on the controller to require any of the specified hosts:

[Host("contoso.com", "adventure-works.com")]
public class ProductController : Controller
{
    public IActionResult Index()
    {
        return ControllerContext.MyDisplayRouteInfo();
    }

    [Host("example.com:8080")]
    public IActionResult Privacy()
    {
        return ControllerContext.MyDisplayRouteInfo();
    }
}

When the [Host] attribute is applied to both the controller and action method:

Performance guidance for routing

Most of routing was updated in ASP.NET Core 3.0 to increase performance.

When an app has performance problems, routing is often suspected as the problem. The reason routing is suspected is that frameworks like controllers and Razor Pages report the amount of time spent inside the framework in their logging messages. When there's a significant difference between the time reported by controllers and the total time of the request:

Routing is performance tested using thousands of endpoints. It's unlikely that a typical app will encounter a performance problem just by being too large. The most common root cause of slow routing performance is usually a badly-behaving custom middleware.

This following code sample demonstrates a basic technique for narrowing down the source of delay:

public void Configure(IApplicationBuilder app, ILogger<Startup> logger)
{
    app.Use(next => async context =>
    {
        var sw = Stopwatch.StartNew();
        await next(context);
        sw.Stop();

        logger.LogInformation("Time 1: {ElapsedMilliseconds}ms", sw.ElapsedMilliseconds);
    });

    app.UseRouting();

    app.Use(next => async context =>
    {
        var sw = Stopwatch.StartNew();
        await next(context);
        sw.Stop();

        logger.LogInformation("Time 2: {ElapsedMilliseconds}ms", sw.ElapsedMilliseconds);
    });

    app.UseAuthorization();

    app.Use(next => async context =>
    {
        var sw = Stopwatch.StartNew();
        await next(context);
        sw.Stop();

        logger.LogInformation("Time 3: {ElapsedMilliseconds}ms", sw.ElapsedMilliseconds);
    });

    app.UseEndpoints(endpoints =>
    {
        endpoints.MapGet("/", async context =>
        {
            await context.Response.WriteAsync("Timing test.");
        });
    });
}

To time routing:

This is a basic way to narrow down the delay when it's significant, for example, more than 10ms. Subtracting Time 2 from Time 1 reports the time spent inside the UseRouting middleware.

The following code uses a more compact approach to the preceding timing code:

public sealed class MyStopwatch : IDisposable
{
    ILogger<Startup> _logger;
    string _message;
    Stopwatch _sw;

    public MyStopwatch(ILogger<Startup> logger, string message)
    {
        _logger = logger;
        _message = message;
        _sw = Stopwatch.StartNew();
    }

    private bool disposed = false;


    public void Dispose()
    {
        if (!disposed)
        {
            _logger.LogInformation("{Message }: {ElapsedMilliseconds}ms",
                                    _message, _sw.ElapsedMilliseconds);

            disposed = true;
        }
    }
}
public void Configure(IApplicationBuilder app, ILogger<Startup> logger)
{
    int count = 0;
    app.Use(next => async context =>
    {
        using (new MyStopwatch(logger, $"Time {++count}"))
        {
            await next(context);
        }

    });

    app.UseRouting();

    app.Use(next => async context =>
    {
        using (new MyStopwatch(logger, $"Time {++count}"))
        {
            await next(context);
        }
    });

    app.UseAuthorization();

    app.Use(next => async context =>
    {
        using (new MyStopwatch(logger, $"Time {++count}"))
        {
            await next(context);
        }
    });

    app.UseEndpoints(endpoints =>
    {
        endpoints.MapGet("/", async context =>
        {
            await context.Response.WriteAsync("Timing test.");
        });
    });
}

Potentially expensive routing features

The following list provides some insight into routing features that are relatively expensive compared with basic route templates:

Guidance for library authors

This section contains guidance for library authors building on top of routing. These details are intended to ensure that app developers have a good experience using libraries and frameworks that extend routing.

Define endpoints

To create a framework that uses routing for URL matching, start by defining a user experience that builds on top of UseEndpoints.

DO build on top of IEndpointRouteBuilder. This allows users to compose your framework with other ASP.NET Core features without confusion. Every ASP.NET Core template includes routing. Assume routing is present and familiar for users.

app.UseEndpoints(endpoints =>
{
    // Your framework
    endpoints.MapMyFramework(...);

    endpoints.MapHealthChecks("/healthz");
});

DO return a sealed concrete type from a call to MapMyFramework(...) that implements IEndpointConventionBuilder. Most framework Map... methods follow this pattern. The IEndpointConventionBuilder interface:

Declaring your own type allows you to add your own framework-specific functionality to the builder. It's ok to wrap a framework-declared builder and forward calls to it.

app.UseEndpoints(endpoints =>
{
    // Your framework
    endpoints.MapMyFramework(...).RequireAuthorization()
                                 .WithMyFrameworkFeature(awesome: true);

    endpoints.MapHealthChecks("/healthz");
});

CONSIDER writing your own EndpointDataSource. EndpointDataSource is the low-level primitive for declaring and updating a collection of endpoints. EndpointDataSource is a powerful API used by controllers and Razor Pages.

The routing tests have a basic example of a non-updating data source.

DO NOT attempt to register an EndpointDataSource by default. Require users to register your framework in UseEndpoints. The philosophy of routing is that nothing is included by default, and that UseEndpoints is the place to register endpoints.

Creating routing-integrated middleware

CONSIDER defining metadata types as an interface.

DO make it possible to use metadata types as an attribute on classes and methods.

public interface ICoolMetadata
{
    bool IsCool { get; }
}

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Method)]
public class CoolMetadataAttribute : Attribute, ICoolMetadata
{
    public bool IsCool => true;
}

Frameworks like controllers and Razor Pages support applying metadata attributes to types and methods. If you declare metadata types:

Declaring a metadata type as an interface adds another layer of flexibility:

DO make it possible to override metadata, as shown in the following example:

public interface ICoolMetadata
{
    bool IsCool { get; }
}

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Method)]
public class CoolMetadataAttribute : Attribute, ICoolMetadata
{
    public bool IsCool => true;
}

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Method)]
public class SuppressCoolMetadataAttribute : Attribute, ICoolMetadata
{
    public bool IsCool => false;
}

[CoolMetadata]
public class MyController : Controller
{
    public void MyCool() { }

    [SuppressCoolMetadata]
    public void Uncool() { }
}

The best way to follow these guidelines is to avoid defining marker metadata:

The metadata collection is ordered and supports overriding by priority. In the case of controllers, metadata on the action method is most specific.

DO make middleware useful with and without routing.

app.UseRouting();

app.UseAuthorization(new AuthorizationPolicy() { ... });

app.UseEndpoints(endpoints =>
{
    // Your framework
    endpoints.MapMyFramework(...).RequireAuthorization();
});

As an example of this guideline, consider the UseAuthorization middleware. The authorization middleware allows you to pass in a fallback policy. The fallback policy, if specified, applies to both:

This makes the authorization middleware useful outside of the context of routing. The authorization middleware can be used for traditional middleware programming.

Debug diagnostics

For detailed routing diagnostic output, set Logging:LogLevel:Microsoft to Debug. In the development environment, set the log level in appsettings.Development.json:

{
  "Logging": {
    "LogLevel": {
      "Default": "Information",
      "Microsoft": "Debug",
      "Microsoft.Hosting.Lifetime": "Information"
    }
  }
}