Functions — Polars documentation (original) (raw)

These functions are available from the Polars module root and can be used as expressions, and sometimes also in eager contexts.

all(*names[, ignore_nulls]) Either return an expression representing all columns, or evaluate a bitwise AND operation.
all_horizontal(*exprs) Compute the bitwise AND horizontally across columns.
any(*names[, ignore_nulls]) Evaluate a bitwise OR operation.
any_horizontal(*exprs) Compute the bitwise OR horizontally across columns.
approx_n_unique(*columns) Approximate count of unique values.
arange([start, end, step, dtype, eager]) Generate a range of integers.
arctan2(y, x) Compute two argument arctan in radians.
arctan2d(y, x) Compute two argument arctan in degrees.
arg_sort_by(exprs, *more_exprs[, ...]) Return the row indices that would sort the column(s).
arg_where(condition, *[, eager]) Return indices where condition evaluates True.
business_day_count(start, end, *[, ...]) Count the number of business days between start and end (not including end).
coalesce(exprs, *more_exprs[, eager]) Folds the columns from left to right, keeping the first non-null value.
concat_arr(exprs, *more_exprs) Horizontally concatenate columns into a single array column.
concat_list(exprs, *more_exprs) Horizontally concatenate columns into a single list column.
concat_str(exprs, *more_exprs[, separator, ...]) Horizontally concatenate columns into a single string column.
corr(a, b, *[, method, ddof, ...]) Compute the Pearson's or Spearman rank correlation between two columns.
count(*columns) Return the number of non-null values in the column.
cov(a, b, *[, ddof, eager]) Compute the covariance between two columns/ expressions.
cum_count(*columns[, reverse]) Return the cumulative count of the non-null values in the column.
cum_fold(acc, function, exprs, *[, include_init]) Cumulatively fold horizontally across columns with a left fold.
cum_reduce(function, exprs) Cumulatively reduce horizontally across columns with a left fold.
cum_sum(*names) Cumulatively sum all values.
cum_sum_horizontal(*exprs) Cumulatively sum all values horizontally across columns.
date(year, month, day) Create a Polars literal expression of type Date.
date_range(start, end[, interval, closed, eager]) Generate a date range.
date_ranges(start, end[, interval, closed, ...]) Create a column of date ranges.
datetime(year, month, day[, hour, minute, ...]) Create a Polars literal expression of type Datetime.
datetime_range(start, end[, interval, ...]) Generate a datetime range.
datetime_ranges(start, end[, interval, ...]) Create a column of datetime ranges.
duration(*[, weeks, days, hours, minutes, ...]) Create polars Duration from distinct time components.
element() Alias for an element being evaluated in an eval expression.
exclude(columns, *more_columns) Represent all columns except for the given columns.
first(*columns) Get the first column or value.
fold(acc, function, exprs, *[, ...]) Accumulate over multiple columns horizontally/ row wise with a left fold.
format(f_string, *args) Format expressions as a string.
from_epoch(column[, time_unit]) Utility function that parses an epoch timestamp (or Unix time) to Polars Date(time).
groups(column) Syntactic sugar for pl.col("foo").agg_groups().
head(column[, n]) Get the first n rows.
implode(*columns) Aggregate all column values into a list.
int_range([start, end, step, dtype, eager]) Generate a range of integers.
int_ranges([start, end, step, dtype, eager]) Generate a range of integers for each row of the input columns.
last(*columns) Get the last column or value.
len() Return the number of rows in the context.
linear_space(start, end, num_samples, *[, ...]) Create sequence of evenly-spaced points.
linear_spaces(start, end, num_samples, *[, ...]) Generate a sequence of evenly-spaced values for each row between start and end.
lit(value[, dtype, allow_object]) Return an expression representing a literal value.
map_batches(exprs, function[, return_dtype]) Map a custom function over multiple columns/expressions.
map_groups(exprs, function[, return_dtype, ...]) Apply a custom/user-defined function (UDF) in a GroupBy context.
max(*names) Get the maximum value.
max_horizontal(*exprs) Get the maximum value horizontally across columns.
mean(*columns) Get the mean value.
mean_horizontal(*exprs[, ignore_nulls]) Compute the mean of all values horizontally across columns.
median(*columns) Get the median value.
min(*names) Get the minimum value.
min_horizontal(*exprs) Get the minimum value horizontally across columns.
n_unique(*columns) Count unique values.
nth(*indices) Get the nth column(s) of the context.
ones(n[, dtype, eager]) Construct a column of length n filled with ones.
quantile(column, quantile[, interpolation]) Syntactic sugar for pl.col("foo").quantile(..).
reduce(function, exprs) Accumulate over multiple columns horizontally/ row wise with a left fold.
repeat(value, n, *[, dtype, eager]) Construct a column of length n filled with the given value.
rolling_corr(a, b, *, window_size[, ...]) Compute the rolling correlation between two columns/ expressions.
rolling_cov(a, b, *, window_size[, ...]) Compute the rolling covariance between two columns/ expressions.
select(*exprs[, eager]) Run polars expressions without a context.
sql(query, *[, eager]) Execute a SQL query against frames in the global namespace.
sql_expr(sql) Parse one or more SQL expressions to Polars expression(s).
std(column[, ddof]) Get the standard deviation.
struct(*exprs[, schema, eager]) Collect columns into a struct column.
sum(*names) Sum all values.
sum_horizontal(*exprs[, ignore_nulls]) Sum all values horizontally across columns.
tail(column[, n]) Get the last n rows.
time([hour, minute, second, microsecond]) Create a Polars literal expression of type Time.
time_range([start, end, interval, closed, eager]) Generate a time range.
time_ranges([start, end, interval, closed, ...]) Create a column of time ranges.
var(column[, ddof]) Get the variance.
when(*predicates, **constraints) Start a when-then-otherwise expression.
zeros(n[, dtype, eager]) Construct a column of length n filled with zeros.