Functions — Polars documentation (original) (raw)
These functions are available from the Polars module root and can be used as expressions, and sometimes also in eager contexts.
all(*names[, ignore_nulls]) | Either return an expression representing all columns, or evaluate a bitwise AND operation. |
---|---|
all_horizontal(*exprs) | Compute the bitwise AND horizontally across columns. |
any(*names[, ignore_nulls]) | Evaluate a bitwise OR operation. |
any_horizontal(*exprs) | Compute the bitwise OR horizontally across columns. |
approx_n_unique(*columns) | Approximate count of unique values. |
arange([start, end, step, dtype, eager]) | Generate a range of integers. |
arctan2(y, x) | Compute two argument arctan in radians. |
arctan2d(y, x) | Compute two argument arctan in degrees. |
arg_sort_by(exprs, *more_exprs[, ...]) | Return the row indices that would sort the column(s). |
arg_where(condition, *[, eager]) | Return indices where condition evaluates True. |
business_day_count(start, end, *[, ...]) | Count the number of business days between start and end (not including end). |
coalesce(exprs, *more_exprs[, eager]) | Folds the columns from left to right, keeping the first non-null value. |
concat_arr(exprs, *more_exprs) | Horizontally concatenate columns into a single array column. |
concat_list(exprs, *more_exprs) | Horizontally concatenate columns into a single list column. |
concat_str(exprs, *more_exprs[, separator, ...]) | Horizontally concatenate columns into a single string column. |
corr(a, b, *[, method, ddof, ...]) | Compute the Pearson's or Spearman rank correlation between two columns. |
count(*columns) | Return the number of non-null values in the column. |
cov(a, b, *[, ddof, eager]) | Compute the covariance between two columns/ expressions. |
cum_count(*columns[, reverse]) | Return the cumulative count of the non-null values in the column. |
cum_fold(acc, function, exprs, *[, include_init]) | Cumulatively fold horizontally across columns with a left fold. |
cum_reduce(function, exprs) | Cumulatively reduce horizontally across columns with a left fold. |
cum_sum(*names) | Cumulatively sum all values. |
cum_sum_horizontal(*exprs) | Cumulatively sum all values horizontally across columns. |
date(year, month, day) | Create a Polars literal expression of type Date. |
date_range(start, end[, interval, closed, eager]) | Generate a date range. |
date_ranges(start, end[, interval, closed, ...]) | Create a column of date ranges. |
datetime(year, month, day[, hour, minute, ...]) | Create a Polars literal expression of type Datetime. |
datetime_range(start, end[, interval, ...]) | Generate a datetime range. |
datetime_ranges(start, end[, interval, ...]) | Create a column of datetime ranges. |
duration(*[, weeks, days, hours, minutes, ...]) | Create polars Duration from distinct time components. |
element() | Alias for an element being evaluated in an eval expression. |
exclude(columns, *more_columns) | Represent all columns except for the given columns. |
first(*columns) | Get the first column or value. |
fold(acc, function, exprs, *[, ...]) | Accumulate over multiple columns horizontally/ row wise with a left fold. |
format(f_string, *args) | Format expressions as a string. |
from_epoch(column[, time_unit]) | Utility function that parses an epoch timestamp (or Unix time) to Polars Date(time). |
groups(column) | Syntactic sugar for pl.col("foo").agg_groups(). |
head(column[, n]) | Get the first n rows. |
implode(*columns) | Aggregate all column values into a list. |
int_range([start, end, step, dtype, eager]) | Generate a range of integers. |
int_ranges([start, end, step, dtype, eager]) | Generate a range of integers for each row of the input columns. |
last(*columns) | Get the last column or value. |
len() | Return the number of rows in the context. |
linear_space(start, end, num_samples, *[, ...]) | Create sequence of evenly-spaced points. |
linear_spaces(start, end, num_samples, *[, ...]) | Generate a sequence of evenly-spaced values for each row between start and end. |
lit(value[, dtype, allow_object]) | Return an expression representing a literal value. |
map_batches(exprs, function[, return_dtype]) | Map a custom function over multiple columns/expressions. |
map_groups(exprs, function[, return_dtype, ...]) | Apply a custom/user-defined function (UDF) in a GroupBy context. |
max(*names) | Get the maximum value. |
max_horizontal(*exprs) | Get the maximum value horizontally across columns. |
mean(*columns) | Get the mean value. |
mean_horizontal(*exprs[, ignore_nulls]) | Compute the mean of all values horizontally across columns. |
median(*columns) | Get the median value. |
min(*names) | Get the minimum value. |
min_horizontal(*exprs) | Get the minimum value horizontally across columns. |
n_unique(*columns) | Count unique values. |
nth(*indices) | Get the nth column(s) of the context. |
ones(n[, dtype, eager]) | Construct a column of length n filled with ones. |
quantile(column, quantile[, interpolation]) | Syntactic sugar for pl.col("foo").quantile(..). |
reduce(function, exprs) | Accumulate over multiple columns horizontally/ row wise with a left fold. |
repeat(value, n, *[, dtype, eager]) | Construct a column of length n filled with the given value. |
rolling_corr(a, b, *, window_size[, ...]) | Compute the rolling correlation between two columns/ expressions. |
rolling_cov(a, b, *, window_size[, ...]) | Compute the rolling covariance between two columns/ expressions. |
select(*exprs[, eager]) | Run polars expressions without a context. |
sql(query, *[, eager]) | Execute a SQL query against frames in the global namespace. |
sql_expr(sql) | Parse one or more SQL expressions to Polars expression(s). |
std(column[, ddof]) | Get the standard deviation. |
struct(*exprs[, schema, eager]) | Collect columns into a struct column. |
sum(*names) | Sum all values. |
sum_horizontal(*exprs[, ignore_nulls]) | Sum all values horizontally across columns. |
tail(column[, n]) | Get the last n rows. |
time([hour, minute, second, microsecond]) | Create a Polars literal expression of type Time. |
time_range([start, end, interval, closed, eager]) | Generate a time range. |
time_ranges([start, end, interval, closed, ...]) | Create a column of time ranges. |
var(column[, ddof]) | Get the variance. |
when(*predicates, **constraints) | Start a when-then-otherwise expression. |
zeros(n[, dtype, eager]) | Construct a column of length n filled with zeros. |