numpy.logical_xor — NumPy v1.13 Manual (original) (raw)
numpy.
logical_xor
(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, _subok=True_[, signature, _extobj_]) = <ufunc 'logical_xor'>¶
Compute the truth value of x1 XOR x2, element-wise.
Parameters: | x1, x2 : array_like Logical XOR is applied to the elements of x1 and x2. They must be broadcastable to the same shape. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see theufunc docs. |
---|---|
Returns: | y : bool or ndarray of bool Boolean result of the logical XOR operation applied to the elements of x1 and x2; the shape is determined by whether or not broadcasting of one or both arrays was required. |
Examples
np.logical_xor(True, False) True np.logical_xor([True, True, False, False], [True, False, True, False]) array([False, True, True, False], dtype=bool)
x = np.arange(5) np.logical_xor(x < 1, x > 3) array([ True, False, False, False, True], dtype=bool)
Simple example showing support of broadcasting
np.logical_xor(0, np.eye(2)) array([[ True, False], [False, True]], dtype=bool)