csc_array ā SciPy v1.16.0 Manual (original) (raw)
scipy.sparse.
class scipy.sparse.csc_array(arg1, shape=None, dtype=None, copy=False, *, maxprint=None)[source]#
Compressed Sparse Column array.
This can be instantiated in several ways:
csc_array(D)
where D is a 2-D ndarray
csc_array(S)
with another sparse array or matrix S (equivalent to S.tocsc())
csc_array((M, N), [dtype])
to construct an empty array with shape (M, N) dtype is optional, defaulting to dtype=ādā.
csc_array((data, (row_ind, col_ind)), [shape=(M, N)])
where data
, row_ind
and col_ind
satisfy the relationship a[row_ind[k], col_ind[k]] = data[k]
.
csc_array((data, indices, indptr), [shape=(M, N)])
is the standard CSC representation where the row indices for column i are stored in indices[indptr[i]:indptr[i+1]]
and their corresponding values are stored indata[indptr[i]:indptr[i+1]]
. If the shape parameter is not supplied, the array dimensions are inferred from the index arrays.
Attributes:
dtypedtype
Data type of the array
shape2-tuple
Shape of the array
ndimint
Number of dimensions (this is always 2)
Number of stored values, including explicit zeros.
Number of stored values.
data
CSC format data array of the array
indices
CSC format index array of the array
indptr
CSC format index pointer array of the array
Whether the indices are sorted
Whether the array/matrix has sorted indices and no duplicates
Transpose.
Methods
Notes
Sparse arrays can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power.
Advantages of the CSC format
- efficient arithmetic operations CSC + CSC, CSC * CSC, etc.
- efficient column slicing
- fast matrix vector products (CSR, BSR may be faster)
Disadvantages of the CSC format
- slow row slicing operations (consider CSR)
- changes to the sparsity structure are expensive (consider LIL or DOK)
Canonical format
- Within each column, indices are sorted by row.
- There are no duplicate entries.
Examples
import numpy as np from scipy.sparse import csc_array csc_array((3, 4), dtype=np.int8).toarray() array([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], dtype=int8)
row = np.array([0, 2, 2, 0, 1, 2]) col = np.array([0, 0, 1, 2, 2, 2]) data = np.array([1, 2, 3, 4, 5, 6]) csc_array((data, (row, col)), shape=(3, 3)).toarray() array([[1, 0, 4], [0, 0, 5], [2, 3, 6]])
indptr = np.array([0, 2, 3, 6]) indices = np.array([0, 2, 2, 0, 1, 2]) data = np.array([1, 2, 3, 4, 5, 6]) csc_array((data, indices, indptr), shape=(3, 3)).toarray() array([[1, 0, 4], [0, 0, 5], [2, 3, 6]])