Interpolation (scipy.interpolate) — SciPy v1.15.2 Manual (original) (raw)

Sub-package for objects used in interpolation.

As listed below, this sub-package contains spline functions and classes, 1-D and multidimensional (univariate and multivariate) interpolation classes, Lagrange and Taylor polynomial interpolators, and wrappers for FITPACKand DFITPACK functions.

Univariate interpolation#

interp1d(x, y[, kind, axis, copy, ...]) Interpolate a 1-D function.
BarycentricInterpolator(xi[, yi, axis, wi, rng]) Interpolating polynomial for a set of points.
KroghInterpolator(xi, yi[, axis]) Interpolating polynomial for a set of points.
barycentric_interpolate(xi, yi, x[, axis, ...]) Convenience function for polynomial interpolation.
krogh_interpolate(xi, yi, x[, der, axis]) Convenience function for polynomial interpolation.
pchip_interpolate(xi, yi, x[, der, axis]) Convenience function for pchip interpolation.
CubicHermiteSpline(x, y, dydx[, axis, ...]) Piecewise-cubic interpolator matching values and first derivatives.
PchipInterpolator(x, y[, axis, extrapolate]) PCHIP 1-D monotonic cubic interpolation.
Akima1DInterpolator(x, y[, axis, method, ...]) Akima interpolator
CubicSpline(x, y[, axis, bc_type, extrapolate]) Cubic spline data interpolator.
PPoly(c, x[, extrapolate, axis]) Piecewise polynomial in terms of coefficients and breakpoints
BPoly(c, x[, extrapolate, axis]) Piecewise polynomial in terms of coefficients and breakpoints.
FloaterHormannInterpolator(points, values, *) Floater-Hormann barycentric rational interpolation.

Multivariate interpolation#

Unstructured data:

griddata(points, values, xi[, method, ...]) Interpolate unstructured D-D data.
LinearNDInterpolator(points, values[, ...]) Piecewise linear interpolator in N > 1 dimensions.
NearestNDInterpolator(x, y[, rescale, ...]) NearestNDInterpolator(x, y).
CloughTocher2DInterpolator(points, values[, ...]) CloughTocher2DInterpolator(points, values, tol=1e-6).
RBFInterpolator(y, d[, neighbors, ...]) Radial basis function (RBF) interpolation in N dimensions.
Rbf(*args, **kwargs) A class for radial basis function interpolation of functions from N-D scattered data to an M-D domain.
interp2d(x, y, z[, kind, copy, ...]) Removed in version 1.14.0.

For data on a grid:

interpn(points, values, xi[, method, ...]) Multidimensional interpolation on regular or rectilinear grids.
RegularGridInterpolator(points, values[, ...]) Interpolator on a regular or rectilinear grid in arbitrary dimensions.
RectBivariateSpline(x, y, z[, bbox, kx, ky, s]) Bivariate spline approximation over a rectangular mesh.

Tensor product polynomials:

NdPPoly(c, x[, extrapolate]) Piecewise tensor product polynomial
NdBSpline(t, c, k, *[, extrapolate]) Tensor product spline object.

1-D Splines#

BSpline(t, c, k[, extrapolate, axis]) Univariate spline in the B-spline basis.
make_interp_spline(x, y[, k, t, bc_type, ...]) Compute the (coefficients of) interpolating B-spline.
make_lsq_spline(x, y, t[, k, w, axis, ...]) Compute the (coefficients of) an LSQ (Least SQuared) based fitting B-spline.
make_smoothing_spline(x, y[, w, lam]) Compute the (coefficients of) smoothing cubic spline function using lam to control the tradeoff between the amount of smoothness of the curve and its proximity to the data.
generate_knots(x, y, *[, w, xb, xe, k, s, nest]) Replicate FITPACK's constructing the knot vector.
make_splrep(x, y, *[, w, xb, xe, k, s, t, nest]) Find the B-spline representation of a 1D function.
make_splprep(x, *[, w, u, ub, ue, k, s, t, nest]) Find a smoothed B-spline representation of a parametric N-D curve.

Functional interface to FITPACK routines:

splrep(x, y[, w, xb, xe, k, task, s, t, ...]) Find the B-spline representation of a 1-D curve.
splprep(x[, w, u, ub, ue, k, task, s, t, ...]) Find the B-spline representation of an N-D curve.
splev(x, tck[, der, ext]) Evaluate a B-spline or its derivatives.
splint(a, b, tck[, full_output]) Evaluate the definite integral of a B-spline between two given points.
sproot(tck[, mest]) Find the roots of a cubic B-spline.
spalde(x, tck) Evaluate a B-spline and all its derivatives at one point (or set of points) up to order k (the degree of the spline), being 0 the spline itself.
splder(tck[, n]) Compute the spline representation of the derivative of a given spline
splantider(tck[, n]) Compute the spline for the antiderivative (integral) of a given spline.
insert(x, tck[, m, per]) Insert knots into a B-spline.

Object-oriented FITPACK interface:

UnivariateSpline(x, y[, w, bbox, k, s, ext, ...]) 1-D smoothing spline fit to a given set of data points.
InterpolatedUnivariateSpline(x, y[, w, ...]) 1-D interpolating spline for a given set of data points.
LSQUnivariateSpline(x, y, t[, w, bbox, k, ...]) 1-D spline with explicit internal knots.

2-D Splines#

For data on a grid:

RectBivariateSpline(x, y, z[, bbox, kx, ky, s]) Bivariate spline approximation over a rectangular mesh.
RectSphereBivariateSpline(u, v, r[, s, ...]) Bivariate spline approximation over a rectangular mesh on a sphere.

For unstructured data:

BivariateSpline() Base class for bivariate splines.
SmoothBivariateSpline(x, y, z[, w, bbox, ...]) Smooth bivariate spline approximation.
SmoothSphereBivariateSpline(theta, phi, r[, ...]) Smooth bivariate spline approximation in spherical coordinates.
LSQBivariateSpline(x, y, z, tx, ty[, w, ...]) Weighted least-squares bivariate spline approximation.
LSQSphereBivariateSpline(theta, phi, r, tt, tp) Weighted least-squares bivariate spline approximation in spherical coordinates.

Low-level interface to FITPACK functions:

bisplrep(x, y, z[, w, xb, xe, yb, ye, kx, ...]) Find a bivariate B-spline representation of a surface.
bisplev(x, y, tck[, dx, dy]) Evaluate a bivariate B-spline and its derivatives.

Rational Approximation#

pade(an, m[, n]) Return Pade approximation to a polynomial as the ratio of two polynomials.
AAA(x, y, *[, rtol, max_terms, clean_up, ...]) AAA real or complex rational approximation.

Additional tools#

See also

scipy.ndimage.map_coordinates,scipy.ndimage.spline_filter,scipy.signal.resample,scipy.signal.bspline,scipy.signal.gauss_spline,scipy.signal.qspline1d,scipy.signal.cspline1d,scipy.signal.qspline1d_eval,scipy.signal.cspline1d_eval,scipy.signal.qspline2d,scipy.signal.cspline2d.

pchip is an alias of PchipInterpolator for backward compatibility (should not be used in new code).