Counterfactual instances on MNIST — Alibi 0.9.5 documentation (original) (raw)
Given a test instance \(X\), this method can generate counterfactual instances \(X^\prime\) given a desired counterfactual class \(t\) which can either be a class specified upfront or any other class that is different from the predicted class of \(X\).
The loss function for finding counterfactuals is the following:
\[L(X^\prime\vert X) = (f_t(X^\prime) - p_t)^2 + \lambda L_1(X^\prime, X).\]
The first loss term, guides the search towards instances \(X^\prime\) for which the predicted class probability \(f_t(X^\prime)\) is close to a pre-specified target class probability \(p_t\) (typically \(p_t=1\)). The second loss term ensures that the counterfactuals are close in the feature space to the original test instance.
In this notebook we illustrate the usage of the basic counterfactual algorithm on the MNIST dataset.
Note
To enable support for Counterfactual, you may need to run
pip install alibi[tensorflow]
import tensorflow as tf tf.get_logger().setLevel(40) # suppress deprecation messages tf.compat.v1.disable_v2_behavior() # disable TF2 behaviour as alibi code still relies on TF1 constructs from tensorflow.keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D, Input from tensorflow.keras.models import Model, load_model from tensorflow.keras.utils import to_categorical import matplotlib %matplotlib inline import matplotlib.pyplot as plt import numpy as np import os from time import time from alibi.explainers import Counterfactual print('TF version: ', tf.version) print('Eager execution enabled: ', tf.executing_eagerly()) # False
TF version: 2.2.0 Eager execution enabled: False
Load and prepare MNIST data
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data() print('x_train shape:', x_train.shape, 'y_train shape:', y_train.shape) plt.gray() plt.imshow(x_test[1]);
x_train shape: (60000, 28, 28) y_train shape: (60000,)
Prepare data: scale, reshape and categorize
x_train = x_train.astype('float32') / 255 x_test = x_test.astype('float32') / 255 x_train = np.reshape(x_train, x_train.shape + (1,)) x_test = np.reshape(x_test, x_test.shape + (1,)) print('x_train shape:', x_train.shape, 'x_test shape:', x_test.shape) y_train = to_categorical(y_train) y_test = to_categorical(y_test) print('y_train shape:', y_train.shape, 'y_test shape:', y_test.shape)
x_train shape: (60000, 28, 28, 1) x_test shape: (10000, 28, 28, 1) y_train shape: (60000, 10) y_test shape: (10000, 10)
xmin, xmax = -.5, .5 x_train = ((x_train - x_train.min()) / (x_train.max() - x_train.min())) * (xmax - xmin) + xmin x_test = ((x_test - x_test.min()) / (x_test.max() - x_test.min())) * (xmax - xmin) + xmin
Define and train CNN model
def cnn_model(): x_in = Input(shape=(28, 28, 1)) x = Conv2D(filters=64, kernel_size=2, padding='same', activation='relu')(x_in) x = MaxPooling2D(pool_size=2)(x) x = Dropout(0.3)(x)
x = Conv2D(filters=32, kernel_size=2, padding='same', activation='relu')(x)
x = MaxPooling2D(pool_size=2)(x)
x = Dropout(0.3)(x)
x = Flatten()(x)
x = Dense(256, activation='relu')(x)
x = Dropout(0.5)(x)
x_out = Dense(10, activation='softmax')(x)
cnn = Model(inputs=x_in, outputs=x_out)
cnn.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
return cnn
cnn = cnn_model() cnn.summary() cnn.fit(x_train, y_train, batch_size=64, epochs=3, verbose=0) cnn.save('mnist_cnn.h5')
Model: "model" _________________________________________________________________ Layer (type) Output Shape Param #
input_1 (InputLayer) [(None, 28, 28, 1)] 0 _________________________________________________________________ conv2d (Conv2D) (None, 28, 28, 64) 320 _________________________________________________________________ max_pooling2d (MaxPooling2D) (None, 14, 14, 64) 0 _________________________________________________________________ dropout (Dropout) (None, 14, 14, 64) 0 _________________________________________________________________ conv2d_1 (Conv2D) (None, 14, 14, 32) 8224 _________________________________________________________________ max_pooling2d_1 (MaxPooling2 (None, 7, 7, 32) 0 _________________________________________________________________ dropout_1 (Dropout) (None, 7, 7, 32) 0 _________________________________________________________________ flatten (Flatten) (None, 1568) 0 _________________________________________________________________ dense (Dense) (None, 256) 401664 _________________________________________________________________ dropout_2 (Dropout) (None, 256) 0 _________________________________________________________________ dense_1 (Dense) (None, 10) 2570
Total params: 412,778 Trainable params: 412,778 Non-trainable params: 0
Evaluate the model on test set
cnn = load_model('mnist_cnn.h5') score = cnn.evaluate(x_test, y_test, verbose=0) print('Test accuracy: ', score[1])
Generate counterfactuals
Original instance:
X = x_test[0].reshape((1,) + x_test[0].shape) plt.imshow(X.reshape(28, 28));
Counterfactual parameters:
shape = (1,) + x_train.shape[1:] target_proba = 1.0 tol = 0.01 # want counterfactuals with p(class)>0.99 target_class = 'other' # any class other than 7 will do max_iter = 1000 lam_init = 1e-1 max_lam_steps = 10 learning_rate_init = 0.1 feature_range = (x_train.min(),x_train.max())
Run counterfactual:
initialize explainer
cf = Counterfactual(cnn, shape=shape, target_proba=target_proba, tol=tol, target_class=target_class, max_iter=max_iter, lam_init=lam_init, max_lam_steps=max_lam_steps, learning_rate_init=learning_rate_init, feature_range=feature_range)
start_time = time() explanation = cf.explain(X) print('Explanation took {:.3f} sec'.format(time() - start_time))
Explanation took 8.407 sec
Results:
pred_class = explanation.cf['class'] proba = explanation.cf['proba'][0][pred_class]
print(f'Counterfactual prediction: {pred_class} with probability {proba}') plt.imshow(explanation.cf['X'].reshape(28, 28));
Counterfactual prediction: 9 with probability 0.9924006462097168
The counterfactual starting from a 7 moves towards the closest class as determined by the model and the data - in this case a 9. The evolution of the counterfactual during the iterations over \(\lambda\) can be seen below (note that all of the following examples satisfy the counterfactual condition):
n_cfs = np.array([len(explanation.all[iter_cf]) for iter_cf in range(max_lam_steps)]) examples = {} for ix, n in enumerate(n_cfs): if n>0: examples[ix] = {'ix': ix, 'lambda': explanation.all[ix][0]['lambda'], 'X': explanation.all[ix][0]['X']} columns = len(examples) + 1 rows = 1
fig = plt.figure(figsize=(16,6))
for i, key in enumerate(examples.keys()): ax = plt.subplot(rows, columns, i+1) ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) plt.imshow(examples[key]['X'].reshape(28,28)) plt.title(f'Iteration: {key}')
Typically, the first few iterations find counterfactuals that are out of distribution, while the later iterations make the counterfactual more sparse and interpretable.
Let’s now try to steer the counterfactual to a specific class:
target_class = 1
cf = Counterfactual(cnn, shape=shape, target_proba=target_proba, tol=tol, target_class=target_class, max_iter=max_iter, lam_init=lam_init, max_lam_steps=max_lam_steps, learning_rate_init=learning_rate_init, feature_range=feature_range)
explanation = start_time = time() explanation = cf.explain(X) print('Explanation took {:.3f} sec'.format(time() - start_time))
Explanation took 6.249 sec
Results:
pred_class = explanation.cf['class'] proba = explanation.cf['proba'][0][pred_class]
print(f'Counterfactual prediction: {pred_class} with probability {proba}') plt.imshow(explanation.cf['X'].reshape(28, 28));
Counterfactual prediction: 1 with probability 0.9999160766601562
As you can see, by specifying a class, the search process can’t go towards the closest class to the test instance (in this case a 9 as we saw previously), so the resulting counterfactual might be less interpretable. We can gain more insight by looking at the difference between the counterfactual and the original instance:
plt.imshow((explanation.cf['X'] - X).reshape(28, 28));
This shows that the counterfactual is stripping out the top part of the 7 to make to result in a prediction of 1 - not very surprising as the dataset has a lot of examples of diagonally slanted 1’s.
Clean up:
os.remove('mnist_cnn.h5')