JavaScript: The Definitive Guide, 4th Edition (original) (raw)

Reference types are another matter, however. Objects, for example, can be of any length -- they do not have a fixed size. The same is true of arrays: an array can have any number of elements. Similarly, a function can contain any amount of JavaScript code. Since these types do not have a fixed size, their values cannot be stored directly in the eight bytes of memory associated with each variable. Instead, the variable stores a reference to the value. Typically, this reference is some form of pointer or memory address. It is not the data value itself, but it tells the variable where to look to find the value.

The distinction between primitive and reference types is an important one, as they behave differently. Consider the following code that uses numbers (a primitive type):

var a = 3.14; // Declare and initialize a variable var b = a; // Copy the variable's value to a new variable a = 4; // Modify the value of the original variable alert(b) // Displays 3.14; the copy has not changed

There is nothing surprising about this code. Now consider what happens if we change the code slightly so that it uses arrays (a reference type) instead of numbers:

var a = [1,2,3]; // Initialize a variable to refer to an array var b = a; // Copy that reference into a new variable a[0] = 99; // Modify the array using the original reference alert(b); // Display the changed array [99,2,3] using the new reference

If this result does not seem surprising to you, you're already well familiar with the distinction between primitive and reference types. If it does seem surprising, take a closer look at the second line. Note that it is the reference to the array value, not the array itself, that is being assigned in this statement. After that second line of code, we still have only one array object; we just happen to have two references to it.