Continuous and discrete mathematical models of tumor-induced angiogenesis (original) (raw)
References
Alberts, B., D. Bray, J. Lewis, M. Raff, K. Roberts and J. D. Watson (1994). The Molecular Biology of the Cell, 3rd edn, New York: Garland Publishing. Google Scholar
Albini, A., G. Allavena, A. Melchiori, F. Giancotti, H. Richter, P. M. Comoglio, S. Parodi, G. R. Martin and G. Tarone (1987). Chemotaxis of 3T3 and SV3T3 cells to fibronectin is mediated through the cell-attachment site in fibronectin and fibronectin cell surface receptor. J. Cell Biol.105, 1867–1872. Article Google Scholar
Alessandri, G., K. S. Raju and P. M. Gullino (1986). Interaction of gangliosides with fibronectin in the mobilization of capillary endothelium. Possible influence on the growth of metastasis. Invasion Metastasis6, 145–165. Google Scholar
Alt, W. (1980). Biased random walk models for chemotaxis and related diffusion approximations. J. Math. Biol.9, 147–177. ArticleMATHMathSciNet Google Scholar
Anderson, A. R. A. and M. A. J. Chaplain (1998). A mathematical model for capillary network formation in the absence of endothelial cell proliferation. App. Math. Lett.11 (to appear).
Anderson, A. R. A., B. D. S. Sleeman, I. M. Young and B. S. Griffiths (1997). Nematode movement along a chemical gradient in a structurally heterogeneous environment: II. Theory. Fundam. Appl. Nematol.20, 165–172. Google Scholar
Arnold, F. and D. C. West (1991). Angiogenesis in wound healing. Pharmac. Ther.52, 407–422. Article Google Scholar
Ausprunk, D. H. and J. Folkman (1977). Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumour angiogenesis. Microvasc. Res.14, 53–65. Article Google Scholar
Balding, D. and D. L. S. McElwain (1985). A mathematical model of tumour-induced capillary growth. J. Theor. Biol.114, 53–73. Google Scholar
Bell, A. D. (1986). The simulation of branching patterns in modular organisms. Phil. Trans. Roy. Soc. Lond.B313, 143–159. Google Scholar
Bell, A. D., D. Roberts and A. Smith (1979). Branching patterns: the simulation of plant architecture. J. Theor. Biol.81.
Ben-Zvi, A., M. M. Rodrigues, J. H. Krachmer and L. S. Fujikawa (1986). Immunohistochemical characterisation of extracellular matrix in the developing human cornea. Curr. Eye Res.5, 105–117. Google Scholar
Bikfalvi, A. (1995). Significance of angiogenesis in tumour progression and metastasis. Eur. J. Cancer31A, 1101–1104. Article Google Scholar
Birdwell, C. R., A. R. Brasier and L. A. Taylor (1980). Two-dimensional peptide mapping of fibronectins from bovine aortic endothelial cells and bovine plasma. Biochem. Biophys. Res. Commun.97, 574–581. Article Google Scholar
Birdwell, C. R., D. Gospodarowicz and G. L. Nicolson (1978). Identification, localisation and role of fibronectin in cultured endothelial cells. Proc. Natl. Acad. Sci. USA75, 3273–3277. Article Google Scholar
Bowersox, J. C. and N. Sorgente (1982). Chemotaxis of aortic endothelial cells in response to fibronectin. Cancer Res.42, 2547–2551. Google Scholar
Bray, D. (1992). Cell Movements, New York: Garland Publishing. Google Scholar
Brooks, P. C., A. M. P. Montgomery, M. Rosenfeld, R. A. Reisfled, T. Hu, G. Klier and D. A. Cheresh (1994). Integrin αυβ3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell79, 1157–1164. Article Google Scholar
Bussolino, F., M. F. Di Renzo, M. Ziche, E. Bocchietto, M. Olivero, L. Naldini, G. Gaudino, L. Tamagnone, A. Coffer and P. M. Comoglio (1992). Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J. Cell Biol.119, 629–641. Article Google Scholar
Byrne, H. M. and M. A. J. Chaplain (1995). Mathematical models for tumour angiogenesis: numerical simulations and nonlinear wave solutions. Bull. Math. Biol.57, 461–486. ArticleMATH Google Scholar
Carter, S. B. (1965). Principles of cell motility: the direction of cell movement and cancer invasion. Nature208, 1183–1187. Google Scholar
Carter, S. B. (1967). Haptotaxis and the mechanism of cell motility. Nature213, 256–260. Google Scholar
Chaplain, M. A. J. (1995). The mathematical modelling of tumour angiogenesis and invasion Acta Biotheor.43, 387–402. Article Google Scholar
Chaplain, M. A. J. (1996). Avascular growth, angiogenesis and vascular growth in solid tumours: the mathematical modelling of the stages of tumour development. Math. Comput. Model.23, 47–87. ArticleMATH Google Scholar
Chaplain, M. A. J. and A. M. Stuart (1993). A model mechanism for the chemotactic response of endothelial cells to tumour angiogenesis factor. IMA J. Math. Appl. Med. Biol.10, 149–168. MATH Google Scholar
Clark, R. A. F., P. DellaPelle, E. Manseau, J. M. Lanigan, H. F. Dvorak and R. B. Colvin (1982). Blood vessel fibronectin increases in conjunction with endothelial cell proliferation and capillary ingrowth during wound healing. J. Invest. Dermatol.79, 269–276. Article Google Scholar
Clark, R. A. F, H. F. Dvorak and R. B. Colvin (1981). Fibronectin in delayed-type hypersensitivity skin reactions: associations with vessel permeability and endothelial cell activation. J. Immunol.126, 787–793. Google Scholar
Clark, R. A. F, H. J. Winn, H. F. Dvorak and R. B. Colvin (1983). Fibronectin beneath reepithelializing epidermis in vivo: sources and significance. J. Invest. Dermatol.80, 26–30. Article Google Scholar
Cliff, W. J. (1963). Observations on healing tissue: A combined light and electron microscopic investigation. Trans. Roy. Soc. Lond.B246, 305–325. Google Scholar
Dallon, J. C. and H. G. Othmer (1997). A discrete cell model with adaptive signalling for aggregation of Dictyostelium discoideum. Phil. Trans. Roy. Soc. Lond.B352, 391–417. Google Scholar
D’Amore, P. A. and M. Klagsbrun (1984). Endothelial cell mitogens derived from retina and hypothalamus—biochemical and biological similarities J. Cell Biol.99, 1545–1549. Article Google Scholar
Davis, B. (1990). Reinforced random walk. Probab. Th. Rel. Fields84, 203–229. ArticleMATH Google Scholar
Deno, D. C., T. M. Saba and E. P. Lewis (1983). Kinetics of endogenously labeled plasma fibronectin: Incorporation into tissues. Am. J. Physiol.245, R564–R575. Google Scholar
Düchting, W. (1990a). Tumor growth simulation. Comput. Graph.14, 505–508. Article Google Scholar
Düchting, W. (1990b). Computer simulation in cancer research, in Advanced Simulation in Biomedicine, D. P. F. Möller (Ed.), pp. 117–139. New York: Springer-Verlag. Google Scholar
Düchting, W. (1992). Simulation of malignant cell growth, in Fractal Geometry and Computer Graphics, J. L. Encarnção, H.-O. Peitgen, G. Sakas and G. Englert (Eds), pp. 135–143. New York: Springer-Verlag. Google Scholar
Düchting, W., W. Ulmer and T. Ginsberg (1996). Cancer: A challenge for control theory and computer modelling. Eur. J. Cancer32A, 1283–1292. Article Google Scholar
Duh, E. J., G. L. King and L. P. Aiello (1997). Identification of a VEGF receptor (KDR/FLK) promoter element which binds an endothelial cell-specific protein conferring endothelial selective expression. Invest. Opthamol. Vis. Sci.38, 1124–1125. Google Scholar
Dumont, D. J., G. Gradwohl, G. H. Fong, M. C. Puri, M. Gertsenstein, A. Auerbach and M. L. Breitman (1994). Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, TEK, reveal a critical role in vasculogenesis of the embryo. Genes Dev.8, 1897–1909. Google Scholar
Edelstein-Keshet, L. and G. B Ermentrout (1989). Models for branching networks in two dimensions. SIAM J. Appl. Math.49, 1136–1157. ArticleMathSciNetMATH Google Scholar
Ellis, L. E. and I. J. Fidler (1995). Angiogenesis and breast cancer metastasis. Lancet346, 388–389. Article Google Scholar
Ermentrout, G. B. and L. Edelstein-Keshet (1993). Cellular automata approaches to biological modelling. J. Theor. Biol.160, 97–133. Article Google Scholar
Folkman, J. (1985). Tumor angiogenesis. Adv. Cancer Res.43, 175–203. Article Google Scholar
Folkman, J. (1995). Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med.1, 21–31. Article Google Scholar
Folkman, J. and H. Brem (1992). Angiogenesis and inflammation, in Inflammation: Basic Principles and Clinical Correlates, J. I. Gallin, I. M. Goldstein and R. Snyderman (Eds), 2nd edn, New York: Raven Press. Google Scholar
Folkman, J. and C. Haudenschild (1980). Angiogenesis in vitro. Nature288, 551–556. Article Google Scholar
Folkman, J. and M. Klagsbrun (1987). Angiogenic factors. Science235, 442–447. Google Scholar
Fong, G. H., J. Rossant, M. Gertsenstein and M. L. Breitman (1995). Role of the FLT-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature376, 66–70. Article Google Scholar
Gasparini, G. (1995). Tumour angiogenesis as a prognostic assay for invasive ductal breast-carcinoma. J. Natl. Cancer Inst.87, 1799–1801. Google Scholar
Gasparini, G. and A. L. Harris (1995). Clinical importance of the determination of tumour angiogenesis in breast-cancer—much more than a new prognostic tool. J. Clin. Oncol.13, 765–782. Google Scholar
Gimbrone, M. A., R. S. Cotran, S. B. Leapman and J. Folkman (1974). Tumor growth and neovascularization: an experimental model using the rabbit cornea. J. Natln. Cancer Inst.52, 413–427. Google Scholar
Goodman, S. L. and D. Newgreen (1985). Do cells show an inverse locomotory response to fibronectin and laminin substrates? EMBO J.4, 2769–2771. Google Scholar
Gospodarowicz, D., J. Cheng, G. M. Lui, A. Baird and P. Bohlen (1984). Isolation of brain fibroblast growth-factor by heparin-sepharose affinity-chromatography—identity with pituitary fibroblast growth-factor. Proc. Natl. Acad. Sci. USA81, 6963–6967. Article Google Scholar
Gottlieb, M. E. (1990). Modelling blood vessels: a deterministic method with fractal structure based on physiological rules, in Proc. 12th International Conference of IEEE EMBS, pp. 1386–1387. New York: IEEE Press. Google Scholar
Gottlieb, M. E. (1991a). The VT model: a deterministic model of angiogenesis and biofractals based on physiological rules, in Proc. IEEE 17th Annual Northeast Bioengineering Conference, pp. 38–39. New York: IEEE Press. Google Scholar
Gottlieb, M. E. (1991b). Vascular networks: fractal anatomies from non-linear physiologies. IEEE Eng. Med. Bio. Mag.13, 2196–2197. Google Scholar
Graham, C. H. and P. K. Lala (1992). Mechanisms of placental invasion of the uterus and their control. Biochem. Cell Biol.70, 867–874. Article Google Scholar
Greenberg, J. H., S. Seppa, H. Seppa and A. T. Hewitt (1981). Role of collagen and fibronectin in neural crest cell adhesion and migration. Dev. Biol.87, 259–266. Article Google Scholar
Hanahan, D. (1997). Signaling vascular morphogenesis and maintenance. Science227, 48–50. Article Google Scholar
Harris, A. L. (1997). Antiangiogenesis for cancer therapy. Lancet349(suppl. II), 13–15. Article Google Scholar
Harris, A. L., S. Fox, R. Bicknell, R. Leek and K. Gatter (1994). Tumour angiogenesis in breast-cancer—prognostic factor and therapeutic target. J. Cellular Biochem.S18D SID, 225. Google Scholar
Harris, A. L., H. T. Zhang, A. Moghaddam, S. Fox, P. Scott, A. Pattison, K. Gatter, I. Stratford and R. Bicknell (1996). Breast cancer angiogenesis—new approaches to therapy via anti-angiogenesis, hypoxic activated drugs, and vascular targeting. Breast Cancer Res. Treat.38, 97–108. Article Google Scholar
Hatva, E., A. Kaipainen, P. Mentula, J. Jaaskelainen, A. Paetau, M. Haltia and K. Alitalo (1995). Expression of endothelial cell-specific receptor tyrosine kinases and growth-factors in human brain-tumors. Am. J. Pathol.146, 368–378. Google Scholar
Herblin, W. F. and J. L. Gross (1994). Inhibition of angiogenesis as a strategy for tumour-growth control. Mol. Chem. Neuropath.21, 329–336. Google Scholar
Hewett, P. W. and J. C. Murray (1996). Coexpression of FLT-1, FLT-4 and KDR in freshly isolated and cultured human endothelial-cells. Biochem. Biophys. Res. Commun.221, 697–702. Article Google Scholar
Höfer, T., J. A. Sherratt and P. K. Maini (1995). Cellular pattern formation during Dictyostelium aggregation. PhysicaD85, 425–444. Google Scholar
Hynes, R. O. (1990). Fibronectins, Springer-Verlag: New York. Google Scholar
Indermitte, C., Th. M. Liebling and H. Clémonçon (1994). Culture analysis and external interaction models of mycelial growth. Bull. Math. Biol.56, 633–664. ArticleMATH Google Scholar
Jaffee, E. A. and D. F. Mosher (1978). Synthesis of fibronectin by cultured endothelial cells. J. Exp. Med.147, 1779–1791. Article Google Scholar
Johansson, S., S. Gustafson and H. Pertoft (1987). Identification of a fibronectin receptor specific for rat liver endothelial cells. Exp. Cell Res.172, 425–431. Article Google Scholar
Kiani, M. and A. Hudetz (1991). Computer simulation of growth of anastomosing microvascular networks. J. Theor. Biol.150, 547–560. Google Scholar
Knighton, D. M., T. K. Hunt, H. Scheuenstuhl and B. J. Halliday (1983). Oxygen tension regulates the expression of angiogenesis factor by macrophages. Science221, 1283–1285. Google Scholar
Knighton, D. M., I. A. Silver and T. K. Hunt (1981). Regulation of wound-healing angiogenesis—effect of oxygen gradients and inspired oxygen concentration. Surgery90, 262–270. Google Scholar
Kohno, T., N. Sorgente, T. Ishibashi, R. Goodnight and S. J. Ryan (1987). Immunofluorescent studies of fibronectin and laminin in the human eye. Invest. Opthamol. Vis. Sci.28, 506–514. Google Scholar
Kohno, T., N. Sorgente, R. Patterson and S. J. Ryan (1983). Fibronectin and laminin distribution in bovine eye. Jpn. J. Opthamol.27, 496–505. Google Scholar
Lacovara, J., E. B. Cramer and J. P. Quigley (1984). Fibronectin enhancement of directed migration of B16 melanoma cells. Cancer Res.44, 1657–1663. Google Scholar
Landini, G. and G. Misson (1993). Simulation of corneal neo-vascularization by inverted diffusion limited aggregation. Invest. Opthamol. Visual Sci.34, 1872–1875. Google Scholar
Lapidus, I. R. and R. Schiller (1976). Model for the chemotactic response of a bacterial population. Biophys. J.16, 779–789. Google Scholar
Lauffenburger, D., R. Aris and C. R. Kennedy (1984). Travelling bands of chemotactic bacteria in the context of population growth. Bull. Math. Biol.46, 19–40. ArticleMATH Google Scholar
Lewis, C. E., R. Leek, A. Harris and J. O. D. McGee (1995). Cytokine regulation of angiogenesis in breast-cancer—the role of tumour-associated macrophages. J. Leukocyte Biol.57, 747–751. Google Scholar
Lewis, J., J. M. W. Slack and L. Wolpert (1977). Thresholds in development. J. Theor. Biol.65, 579–590. Article Google Scholar
Liotta, L. A., C. N. Rao and S. H. Barsky (1983). Tumour invasion and the extracellular matrix. Lab. Invest.49, 636–649. Google Scholar
Liotta, L. A., G. M. Saidel and J. Kleinerman (1977). Diffusion model of tumor vascularization. Bull. Math. Biol.39, 117–128. Article Google Scholar
Lobb, R. R. and J. W. Fett (1984). Purification of two distinct growth-factors from bovine neural tissue by heparin affinity-chromatography. Biochemistry23, 6295–6299. Article Google Scholar
McCarthy, J. B. and L. T. Furcht (1984). Laminin and fibronectin promote the directed migration of B16 melanoma cells in vitro. J. Cell Biol.98, 1474–1480. Article Google Scholar
Macarak, E. J., E. Kirby, T. Kirk and N. A. Kefalides (1978). Synthesis of cold-insoluble globulin cultured by calf endothelial cells. Proc. Natl. Acad. Sci. USA75, 2621–2625. Article Google Scholar
Maciag, T., T. Mehlman, R. Friesel and A. B. Schreiber (1984). Heparin binds endothelial cell-growth factor, the principal endothelial cell mitogen in bovine brain. Science225, 932–935. Google Scholar
Madri, J. A. and B. M. Pratt (1986). Endothelial cell-matrix interactions: in vitro models of angiogenesis. J. Histochem. Cytochem.34, 85–91. Google Scholar
Mandriota, S. J., G. Seghezzi, J. D. Vassalli, N. Ferrara, S. Wasi, R. Mazzieri, P. Mignatti and M. S. Pepper (1995). Vascular endothelial growth-factor increases urokinase receptor expression in vascular endothelial-cells. J. Biol. Chem.270, 9709–9716. Article Google Scholar
Meinhardt, H. (1976). Morphogenesis of lines and nets. Differentiation6, 117–123. Google Scholar
Meinhardt, H. (1982). Models of Biological Pattern Formation, London: Academic Press. Google Scholar
Millauer, B., Wizigman-Voos, H. Schnürch, R. Martinez, N. P. H. Müller, W. Risau and A. Ullrich (1993). High-affinity VEGF binding and developmental expression suggest FLK-1 as a major regulator of vasculogenesis and angiogenesis. Cell72, 835–846. Article Google Scholar
Mitchell, A. R. and D. F. Griffiths (1980). The Finite Difference Method in Partial Differential Equations, Chichester: Wiley. MATH Google Scholar
Monaghan, P., M. J. Warburton, N. Perusinghe and P. S. Rutland (1983). Topographical arrangement of basement membrane proteins in lactating rat mammary gland: comparison of the distribution of Type IV collagen, laminin, fibronectin and Thy-1 at the ultrasructural level. Proc. Natl. Acad. Sci.80, 3344–3348. Article Google Scholar
Muthukkaruppan, V. R., L. Kubai and R. Auerbach (1982). Tumor-induced neovascularization in the mouse eye. J. Natl. Cancer Inst.69, 699–705. Google Scholar
Nekka, F., S. Kyriacos, C. Kerrigan and L. Cartilier (1996). A model of growing vascular structures. Bull. Math. Biol.58, 409–424. ArticleMATH Google Scholar
Norton, J. A. (1995). Tumor angiogenesis: the future is now. Ann. Surg.222, 693–694. Article Google Scholar
Oh, E., M. Pierschbacher and E. Ruoslahti (1981). Deposition of plasma fibronectin in tissues. Proc. Natl. Acad. Sci. USA78, 3218–3221. Article Google Scholar
Olsen, L., J. A. Sherratt, P. K. Maini and F. Arnold (1997). A mathematical model for the capillary endothelial cell-extracellular matrix interactions in wound-healing angiogenesis. IMA J. Math. Appl. Med. Biol.14, 261–281. MATH Google Scholar
O’Reilly, M. S., L. Holmgren, Y. Shing, C. Chen, R. A. Rosenthal, M. Moses, W. S. Lane, Y. Cao, E. Helene Sage and J. Folkman (1994). Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell79, 315–328. Article Google Scholar
Orme, M. E. and M. A. J. Chaplain (1996). A mathematical model of the first steps of tumour-related angiogenesis: capillary sprout formation and secondary branching. IMA J. Math. App. Med. and Biol.13, 73–98. MATH Google Scholar
Orme, M. E. and M. A. J. Chaplain (1997). Two-dimensional models of tumour angiogenesis and anti-angiogenesis strategies. IMA J. Math. App. Med. and Biol.14, 189–205. MATH Google Scholar
Ortega, N., D. Dossantos and J. Plouet (1996). Activation of the VEGF receptor FLT-1 mediates corneal endothelial-cell migration permeability. Invest. Optham. Vis. Sci.37, 417–418. Google Scholar
Ortega, N. and J. Plouet (1995). Constitutive expression of the VEGF receptor KDR/FLK-1 in corneal endothelial-cell mediates their proliferation. Vis. Res.35, 4217–4218. Google Scholar
Othmer, H. and A. Stevens (1997). Aggregation, blowup and collapse: The ABCs of taxis and reinforced random walks. SIAM J. Appl. Math.57 1044–1081. ArticleMathSciNetMATH Google Scholar
Paku, S. and N. Paweletz (1991). First steps of tumor-related angiogenesis. Lab. Invest.65, 334–346. Google Scholar
Patterson, C., M. A. Perrella, W. O. Endege, M. Yoshizumi, M. E. Lee and E. Haber (1996). Down-regulation of vascular endothelial growth-factor receptors by tumor-necrosis-factor-alpha in cultured human vascular endothelial-cells. J. Clin. Invest.98, 490–496. Article Google Scholar
Paweletz, N. and M. Knierim (1989). Tumor-related angiogenesis. Crit. Rev. Oncol. Hematol.9, 197–242. Google Scholar
Pettet, G., M. A. J. Chaplain, D. L. S. McElwain and H. M. Byrne (1996). On the role of angiogenesis in wound healing. Proc. Roy. Soc. Lond.B263, 1487–1493. Google Scholar
Polverini, P. J., R. S. Cotran, M. A. Gimbrone Jr. and E. R. Unanue (1977). Activated macrophages induce vascular proliferation. Nature269, 804–806. Article Google Scholar
Prusinkiewicz, P. and A. Lindenmayer (1990). The Algorithmic Beauty of Plants, New York: Springer-Verlag. MATH Google Scholar
Quigley, J. P., J. Lacovara and E. B. Cramer (1983). The directed migration of B-16 melanoma-cells in response to a haptotactic chemotactic gradient of fibronectin. J. Cell Biol.97, A450–451. Google Scholar
Relf, M., S. Lejeune, P. A. E. Scott, S. Fox, K. Smith, R. Leek, A. Mogaddam, R. Whitehouse, R. Bicknell and A. L. Harris (1997). Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumour growth factor beta-1, platelet-derived endothelial cell growth factor, placenta growth factor and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res.57, 963–969. Google Scholar
Rieder, H., G. Ramadori, H. P. Dienes and K. H. Meyer zum Buschenfelde (1987). Sinusoidal endothelial cells from guinea pig liver synthesize and secrete cellular fibronectin in vitro. Hepatology7, 856–864. Google Scholar
Rocco, M., E. Infusini, M. G. Daga, L. Gogioso and C. Cuniberti (1987). Models of fibronectin. EMBO J.6, 2343–2349. Google Scholar
Rupnick, M. A., C. L. Stokes, S. K. Williams and D. A. Lauffenburger (1988). Quantitative analysis of human microvessel endothelial cells using a linear under-agarose assay. Lab. Invest.59, 363–372. Google Scholar
Sato, T. N., Y. Tozawa, U. Deutsch, K. Wolburgbuchholz, Y. Fujiwara, M. Gendronmaguire, T. Gridley, H. Wolburg, W. Risau and Y. Qin (1995). Distinct roles of the receptor tyrosine kinases TIE-1 and TIE-2 in blood-vessel formation. Nature376, 70–74. Article Google Scholar
Sawada, H., H. Furthmayr, H. Konomi and Y. Nagai (1987). Immunoelectronmicroscopic localization of extracellular matrix components produced by bovine corneal endothelial cells in vitro. Exp. Cell Res.171, 94–109. Article Google Scholar
Schoefl, G. I. (1963). Studies on inflammation III. Growing capillaries: Their structure and permeability. Virchows Arch. Pathol. Anat.337, 97–141. Article Google Scholar
Schor, S. L., A. M. Schor and G. W. Brazill (1981). The effects of fibronectin on the migration of human foreskin fibroblasts and syrian hamster melanoma cells into three-dimensional gels of lattice collagen fibres. J. Cell Sci.48, 301–314. Google Scholar
Sherratt, J. A. (1994). Chemotaxis and chemokinesis in eukaryotic cells: The Keller-Segel equations as an approximation to a detailed model. Bull. Math. Biol.56, 129–146. ArticleMATH Google Scholar
Sherratt, J. A. and J. D. Murray (1990). Models of epidermal wound healing. Proc. Roy. Soc. Lond.B241, 29–36. Google Scholar
Sherratt, J. A., E. H. Sage and J. D. Murray (1993). Chemical control of eukaryotic cell movement: a new model. J. Theor. Biol.162, 23–40. Article Google Scholar
Sholley, M. M., G. P. Ferguson, H. R. Seibel, J. L. Montour and J. D. Wilson (1984). Mechanisms of neovascularization. Vascular sprouting can occur without proliferation of endothelial cells. Lab. Invest.51, 624–634. Google Scholar
Sramek, S. J., I. H. Wallow, C. Bindley and G. Sterken (1987). Fibronectin distribution in the rat eye. An immunohistochemical study. Invest. Opthamol. Vis. Sci.28, 500–505. Google Scholar
Stokes, C. L. and D. A. Lauffenburger (1991). Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis. J. Theor. Biol.152, 377–403. Google Scholar
Stokes, C. L., M. A. Rupnick, S. K. Williams and D. A. Lauffenburger (1990). Chemotaxis of human microvessel endothelial cells in response to acidic fibroblast growth factor. Lab. Invest.63, 657–668. Google Scholar
Stokes, C. L., D. A. Lauffenburger and S. K. Williams (1991). Migration of individual microvessel endothelial cells: stochastic model and parameter measurement J. Cell Sci.99, 419–430. Google Scholar
Sullivan, R. and M. Klagsbrun (1985). Purification of cartilage-derived growth-factor by heparin affinity-chromatography. J. Biol. Chem.260, 2399–2403. Google Scholar
Terranova, V. P., R. Diflorio, R. M. Lyall, S. Hic, R. Friesel and T. Maciag (1985). Human endothelial cells are chemotactic to endothelial cell growth factor and heparin. J. Cell Biol.101, 2330–2334. Article Google Scholar
Vlodavsky, I., L. K. Johnson, G. Greenburg and D. Gospodarowicz (1979). Vascular endothelial cells maintained in the absence of fibroblast growth factor undergo structural and functional alterations that are incompatible with their in vivo differentiated properties. J. Cell Biol.83, 468–486. Article Google Scholar
Warren, B. A. (1966). The growth of the blood supply to melanoma transplants in the hamster cheek pouch. Lab. Invest.15, 464–473. Google Scholar
Weimar, J. R., J. J. Tyson and L. T. Watson (1992a). Diffusion and wave-propagation in cellular automaton models of excitable media. PhysicaD55, 309–327. MathSciNet Google Scholar
Weimar, J. R., J. J. Tyson and L. T. Watson (1992b). 3rd generation cellular automaton for modelling excitable media. PhysicaD55, 327–339. Google Scholar
Williams, E. C., P. A. Janmey, J. D. Ferry and D. F. Mosher (1982). Conformational states of fibronectin. Effects of pH, ionic strength and collagen-binding. J. Biol. Chem.257, 14973–14978. Google Scholar
Williams, S. K. (1987). Isolation and culture of microvessel and large-vessel endothelial cells; their use in transport and clinical studies, in Microvascular Perfusion and Transport in Health and Disease, P. McDonagh (Ed.), pp. 204–245. Basel: Karger. Google Scholar
Wolpert, L. (1981). Positional information and pattern formation. Phil. Trans. Roy. Soc. Lond.B295, 441–450. Google Scholar
Woodley, D. T., P. M. Bachmann and E. J. O’Keefe (1988). Laminin inhibits human keratinocyte migration. J. Cell Physiol.136, 140–146. Article Google Scholar
Woodward, D. E., R. Tyson, M. R. Myerscough, J. D. Murray, E. O. Budrene and H. C. Berg (1995). Spatio-temporal patterns generated by Salmonella typhimurium. Biophys. J.68, 2181–2189. Article Google Scholar
Yamada, K. M. and K. Olden (1978). Fibronectin-adhesive glycoproteins of cell surface and blood. Nature275, 179–184. Article Google Scholar
Zawicki, D. F., R. K. Jain, G. W. Schmid-Schoenbein and S. Chien (1981). Dynamics of neovascularization in normal tissue. Microvasc. Res.21, 27–47. Article Google Scholar