What is Probability? (original) (raw)

References

  1. Bell, J.S.: On the problem of hidden variables in quantum theory, Rev. Mod. Phys. 38, 447–52 (1966), reprinted in [3]
    Article ADS CAS MATH Google Scholar
  2. Bell, J.S.: Quantum mechanics for cosmologists. In: C. Isham, R. Penrose, and D. Sciama (Eds.), Quantum Gravity 2, Clarendon Press, Oxford (1981) pp. 611–637
    Google Scholar
  3. Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics, Cambridge University Press, Cambridge (1987)
    Google Scholar
  4. de Finetti, B.: Theory of Probability, John Wiley and Sons, New York (1974)
    MATH Google Scholar
  5. Deutsch, D.: Quantum theory of probability and decisions, Proc. Roy. Soc. London A 455, 3129–3137, (1999); available online at http://xxxx.arXiv.org/abs/quant-ph/9906015
    Article ADS MATH MathSciNet Google Scholar
  6. Dowker, F., and Kent, A.: On the consistent histories approach to quantum mechanics, J. Stat. Phys. 82, 1575–646 (1995)
    Article MathSciNet ADS Google Scholar
  7. Gell-Mann, M., and Hartle, J.: Quantum mechanics in the light of cosmology. In: W. Zurek (Ed.), Complexity, Entropy, and the Physics of Information, Addison-Wesley, Reading (1990)
    Google Scholar
  8. Gleason, A.: Measures on the closed subspaces of a Hilbert space, J. Math. Mech. 6, 885–894 (1967)
    MathSciNet Google Scholar
  9. Ghirardi, G.C., P. Pearle, and Rimini, A.: Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles, Phys. Rev. A 42, 78–89 (1990)
    Article ADS PubMed MathSciNet Google Scholar
  10. Holland, P.: The Quantum Theory of Motion, Cambridge University Press, Cambridge (1993)
    Book Google Scholar
  11. Lewis, D.: A subjectivist’s guide to objective chance. In: R.C. Jeffries (Ed.) Studies in Inductive Logic and Probability, Vol. 2, University of California Press, (1980); reprinted in Philosophical Papers, Vol. 2, Oxford University Press, Oxford (1986)
    Google Scholar
  12. Parfit, D.: Reasons and Persons, Oxford University Press, Oxford (1984)
    Google Scholar
  13. Popper, K.: Philosophy of science: A personal report. In: C.A. Mace (Ed.), British Philosophy in the Mid-Century, Allen and Unwin, London, pp. 153–91 (1957); reprinted in K. Popper: Conjectures and Refutations, Routledge and Kegan Paul, London, pp. 33-96 (1963)
    Google Scholar
  14. Rorty, A. (Ed.): The Identities of Persons, University of California Press, Berkeley (1976)
    Google Scholar
  15. Saunders, S.: Derivation of the Born rule from operational assumptions, Proc. Roy. Soc. London A 460, 1–18 (2004), available online at http://xxxx.arXiv.org/abs/quant-ph/02
    Article MathSciNet Google Scholar
  16. Saunders, S.: Time, quantum mechanics, and decoherence, Synthese 102, 235–66 (1995)
    Article MATH MathSciNet Google Scholar
  17. Saunders, S.: Time, quantum mechanics, and probability, Synthese 114, 373–404 (1998); available online at http://xxxx.arXiv.org/abs/quant-ph/01
    Article MathSciNet Google Scholar
  18. Valentini, A.: Hidden variables, statistical mechanics, and the early universe. In: J. Bricmont, D. Dürr, M.C. Galavotti, G. Ghirardi, F. Petruccione, N. Zanghi (Eds.), Chance in Physics: Foundations and Perspectives, Springer-Verlag (2001), available online at http://xxxx.arXiv.org/abs/quant-ph/0104067
    Google Scholar
  19. von Neumann, J., and Morgenstern, O.: Theory of Games and Economic Behaviour, 2nd edn., Princeton University Press, Princeton (1947)
    Google Scholar
  20. Wallace, D.: Quantum probability and decision theory, revisited, available online at http://xxxx.arXiv.org/abs/quant-ph/0211104\. An abbreviated version is published as: Everettian rationality: Defending Deutsch’s approach to probability in the Everett interpretation, Stud. Hist. Phil. Mod. Phys. 34, 415–439 (2003)
    Article MathSciNet Google Scholar
  21. Wallace, D.: Everett and structure, Stud. Hist. Phil. Mod. Phys. 34(1), 87–105 (2003); available online at http://xxxx.arXiv.org/abs/quant-ph/
    Article MathSciNet Google Scholar
  22. Wallace, D.: Quantum probability from subjective likelihood: Improving on Deutsch’s proof of the probability rule, Stud. Hist. Phil. Mod. Phys. (forthcoming)
    Google Scholar
  23. Zeh, H.: The Physical Basis of the Direction of Time, 3rd edn., Springer-Verlag, Berlin (1999)
    MATH Google Scholar
  24. Zurek, W.: Decoherence and the transition from quantum to classical, Phys. Today 44, No. 10, 36–44 (1991)
    Article Google Scholar
  25. Zurek, W.: Negotiating the tricky border between quantum and classical, Phys. Today 46, No. 4, 13–15, 81-90 (1993)
    Article Google Scholar

Download references