The Treponema pallidum Outer Membrane (original) (raw)
Akins DR, Purcell BK, Mitra MM, Norgard MV, Radolf JD (1993) Lipid modification of the 17-kilodalton membrane immunogen of Treponema pallidum determines macrophage activation as well as amphiphilicity. Infect Immun 61:1202–1210 PubMedPubMed CentralCAS Google Scholar
Alderete JF, Baseman JB (1979) Surface-associated host proteins on virulent Treponema pallidum. Infect Immun 26:1048–1056 PubMedPubMed CentralCAS Google Scholar
Anand A, Luthra A, Dunham-Ems S, Caimano MJ, Karanian C, LeDoyt M, Cruz AR, Salazar JC, Radolf JD (2012) TprC/D (Tp0117/131), a trimeric, pore-forming rare outer membrane protein of Treponema pallidum, has a bipartite domain structure. J Bacteriol 194:2321–2333 ArticlePubMedPubMed CentralCAS Google Scholar
Anand A, Luthra A, Edmond ME, Ledoyt M, Caimano MJ, Radolf JD (2013) The major outer sheath protein (Msp) of Treponema denticola has a bipartite domain architecture and exists as periplasmic and outer membrane-spanning conformers. J Bacteriol 195:2060–2071 ArticlePubMedPubMed CentralCAS Google Scholar
Anand A, LeDoyt M, Karanian C, Luthra A, Koszelak-Rosenblum M, Malkowski MG, Puthenveetil R, Vinogradova O, Radolf JD (2015) Bipartite topology of Treponema pallidum repeat proteins C/D and I: outer membrane insertion, trimerization, and porin function require a C-terminal β-barrel domain. J Biol Chem 290:12313–12331 ArticlePubMedPubMed CentralCAS Google Scholar
Arora N, Schuenemann VJ, Jager G, Peltzer A, Seitz A, Herbig A, Strouhal M, Grillova L, Sanchez-Buso L, Kuhnert D, Bos KI, Davis LR, Mikalova L, Bruisten S, Komericki P, French P, Grant PR, Pando MA, Vaulet LG, Fermepin MR, Martinez A, Centurion Lara A, Giacani L, Norris SJ, Smajs D, Bosshard PP, Gonzalez-Candelas F, Nieselt K, Krause J, Bagheri HC (2016) Origin of modern syphilis and emergence of a pandemic Treponema pallidum cluster. Nat Microbiol 2:16245 ArticlePubMedCAS Google Scholar
Asakura H, Kawamoto K, Haishima Y, Igimi S, Yamamoto S, Makino S (2008) Differential expression of the outer membrane protein W (OmpW) stress response in enterohemorrhagic Escherichia coli O157:H7 corresponds to the viable but non-culturable state. Res Microbiol 159:709–717 ArticlePubMedCAS Google Scholar
Bagos PG, Liakopoulos TD, Hamodrakas SJ (2004a) Finding B-barrel outer membrane proteins with a markov chain model. WSEAS Trans Biol Biomed 2:186–189 Google Scholar
Bagos PG, Liakopoulos TD, Spyropoulos IC, Hamodrakas SJ (2004b) A hidden Markov model method, capable of predicting and discriminating beta-barrel outer membrane proteins. BMC Bioinform 5:29 Article Google Scholar
Bavro VN, Pietras Z, Furnham N, Perez-Cano L, Fernandez-Recio J, Pei XY, Misra R, Luisi B (2008) Assembly and channel opening in a bacterial drug efflux machine. Mol Cell 30:114–121 ArticlePubMedPubMed CentralCAS Google Scholar
Becker PS, Akins DR, Radolf JD, Norgard MV (1994) Similarity between the 38-kilodalton lipoprotein of Treponema pallidum and the glucose/galactose-binding (MglB) protein of Escherichia coli. Infect Immun 62:1381–1391 PubMedPubMed CentralCAS Google Scholar
Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Gallo Cassarino T, Bertoni M, Bordoli L, Schwede T (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:W252–W258 ArticlePubMedPubMed CentralCAS Google Scholar
Biovia DS (2015) Discovery studio modeling environment. San Diego, CA, USA, Dassault Systèmes Google Scholar
Blanco DR, Reimann K, Skare J, Champion CI, Foley D, Exner MM, Hancock RE, Miller JN, Lovett MA (1994) Isolation of the outer membranes from Treponema pallidum and Treponema vincentii. J Bacteriol 176:6088–6099 ArticlePubMedPubMed CentralCAS Google Scholar
Blanco DR, Champion CI, Exner MM, Erdjument-Bromage H, Hancock RE, Tempst P, Miller JN, Lovett MA (1995) Porin activity and sequence analysis of a 31-kilodalton Treponema pallidum subsp. pallidum rare outer membrane protein (Tromp1). J Bacteriol 177:3556–3562 ArticlePubMedPubMed CentralCAS Google Scholar
Bordier C (1981) Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem 256:1604–1607 PubMedCAS Google Scholar
Botos I, Majdalani N, Mayclin SJ, McCarthy JG, Lundquist K, Wojtowicz D, Barnard TJ, Gumbart JC, Buchanan SK (2016) Structural and Functional Characterization of the LPS Transporter LptDE from Gram-Negative Pathogens. Structure 24:965–976 ArticlePubMedPubMed CentralCAS Google Scholar
Bourell KW, Schulz W, Norgard MV, Radolf JD (1994) Treponema pallidum rare outer membrane proteins: analysis of mobility by freeze-fracture electron microscopy. J Bacteriol 176:1598–1608 ArticlePubMedPubMed CentralCAS Google Scholar
Brautigam CA, Deka RK, Schuck P, Tomchick DR, Norgard MV (2012) Structural and thermodynamic characterization of the interaction between two periplasmic Treponema pallidum lipoproteins that are components of a TPR-protein-associated TRAP transporter (TPAT). J Mol Biol 420:70–86 ArticlePubMedPubMed CentralCAS Google Scholar
Brautigam CA, Deka RK, Liu WZ, Norgard MV (2015) Insights into the potential function and membrane organization of the TP0435 (Tp17) lipoprotein from Treponema pallidum derived from structural and biophysical analyses. Protein Sci 24:11–19 ArticlePubMedCAS Google Scholar
Brautigam CA, Deka RK, Liu WZ, Norgard MV (2016) The Tp0684 (MglB-2) lipoprotein of Treponema pallidum: a glucose-binding protein with divergent topology. PLoS ONE 11:e0161022 ArticlePubMedPubMed CentralCAS Google Scholar
Brinkman MB, McGill MA, Pettersson J, Rogers A, Matejkova P, Smajs D, Weinstock GM, Norris SJ, Palzkill T (2008) A novel Treponema pallidum antigen, TP0136, is an outer membrane protein that binds human fibronectin. Infect Immun 76:1848–1857 ArticlePubMedPubMed CentralCAS Google Scholar
Brusca JS, Radolf JD (1994) Isolation of integral membrane proteins by phase partitioning with Triton X-114. Methods Enzymol 228:182–193 ArticlePubMedCAS Google Scholar
Cameron CE, Lukehart SA, Castro C, Molini B, Godornes C, Van Voorhis WC (2000) Opsonic potential, protective capacity, and sequence conservation of the Treponema pallidum subspecies pallidum Tp92. J Infect Dis 181:1401–1413 ArticlePubMedCAS Google Scholar
Cameron CE, Brouwer NL, Tisch LM, Kurowa JM (2005) Defining the interation of the Treponema pallidum adhesin TP0751 with laminin. Infect Immun 73:7485–7494 ArticlePubMedPubMed CentralCAS Google Scholar
Cameron CE (2006) The T. pallidum outer membrane and outer membrane proteins. In: Radolf JD, Lukehart SA (ed) Pathogenic treponema: molecular and cellular biology, Caister Academic Press, Norwich, UK, pp. 237–266 Google Scholar
Campanacci V, Bishop RE, Blangy S, Tegoni M, Cambillau C (2006) The membrane bound bacterial lipocalin Blc is a functional dimer with binding preference for lysophospholipids. FEBS Lett 580:4877–4883 ArticlePubMedPubMed CentralCAS Google Scholar
Centurion-Lara A, Castro C, Barrett L, Cameron C, Mostowfi M, Van Voorhis WC, Lukehart SA (1999) Treponema pallidum major sheath protein homologue Tpr K is a target of opsonic antibody and the protective immune response. J Exp Med 189:647–656 ArticlePubMedPubMed CentralCAS Google Scholar
Centurion-Lara A, Godornes C, Castro C, Van Voorhis WC, Lukehart SA (2000) The tprK gene is heterogeneous among Treponema pallidum strains and has multiple alleles. Infect Immun 68:824–831 ArticlePubMedPubMed CentralCAS Google Scholar
Centurion-Lara A, LaFond RE, Hevner K, Godornes C, Molini BJ, Van Voorhis WC, Lukehart SA (2004) Gene conversion: a mechanism for generation of heterogeneity in the tprK gene of Treponema pallidum during infection. Mol Microbiol 52:1579–1596 ArticleCASPubMed Google Scholar
Centurion-Lara A, Giacani L, Godornes C, Molini BJ, Brinck Reid T, Lukehart SA (2013) Fine analysis of genetic diversity of the tpr gene family among treponemal species, subspecies and strains. PLoS Negl Trop Dis 7:e2222 ArticlePubMedPubMed CentralCAS Google Scholar
Chamberlain NR, Brandt ME, Erwin AL, Radolf JD, Norgard MV (1989a) Major integral membrane protein immunogens of Treponema pallidum are proteolipids. Infect Immun 57:2872–2877 PubMedPubMed CentralCAS Google Scholar
Chamberlain NR, DeOgny L, Slaughter C, Radolf JD, Norgard MV (1989b) Acylation of the 47-kilodalton major membrane immunogen of Treponema pallidum determines its hydrophobicity. Infect Immun 57:2878–2885 PubMedPubMed CentralCAS Google Scholar
Chan K, Nasereddin T, Alter L, Centurion-Lara A, Giacani L, Parveen N (2016) Treponema pallidum Lipoprotein TP0435 Expressed in Borrelia burgdorferi produces multiple surface/periplasmic isoforms and mediates adherence. Sci Rep 6:25593 ArticlePubMedPubMed CentralCAS Google Scholar
Conlan S, Bayley H (2003) Folding of a monomeric porin, OmpG, in detergent solution. Biochemistry 42:9453–9465 ArticleCASPubMed Google Scholar
Cox DL, Chang P, McDowall AW, Radolf JD (1992) The outer membrane, not a coat of host proteins, limits antigenicity of virulent Treponema pallidum. Infect Immun 60:1076–1083 PubMedPubMed CentralCAS Google Scholar
Cox DL, Akins DR, Porcella SF, Norgard MV, Radolf JD (1995) Treponema pallidum in gel microdroplets: a novel strategy for investigation of treponemal molecular architecture. Mol Microbiol 15:1151–1164 ArticleCASPubMed Google Scholar
Cox DL, Radolf JD (2001) Insertion of fluorescent fatty acid probes into the outer membranes of the pathogenic spirochaetes Treponema pallidum and Borrelia burgdorferi. Microbiology 147:1161–1169 ArticleCASPubMed Google Scholar
Cox DL, Luthra A, Dunham-Ems S, Desrosiers DC, Salazar JC, Caimano MJ, Radolf JD (2010) Surface immunolabeling and consensus computational framework to identify candidate rare outer membrane proteins of Treponema pallidum. Infect Immun 78:5178–5194 ArticlePubMedPubMed CentralCAS Google Scholar
Cruz AR, Pillay A, Zuluaga AV, Ramirez LG, Duque JE, Aristizabal GE, Fiel-Gan MD, Jaramillo R, Trujillo R, Valencia C, Jagodzinski L, Cox DL, Radolf JD, Salazar JC (2010) Secondary syphilis in Cali, Colombia: new concepts in disease pathogenesis. PLoS Negl Trop Dis 4:e690 ArticlePubMedPubMed CentralCAS Google Scholar
Deitsch KW, Lukehart SA, Stringer JR (2009) Common strategies for antigenic variation by bacterial, fungal and protozoan pathogens. Nat Rev Microbiol 7:493–503 ArticlePubMedPubMed CentralCAS Google Scholar
Deka RK, Lee YH, Hagman KE, Shevchenko D, Lingwood CA, Hasemann CA, Norgard MV, Radolf JD (1999) Physicochemical evidence that Treponema pallidum TroA is a zinc-containing metalloprotein that lacks porin-like structure. J Bacteriol 181:4420–4423 PubMedPubMed CentralCAS Google Scholar
Deka RK, Machius M, Norgard MV, Tomchick DR (2002) Crystal structure of the 47-kDa lipoprotein of Treponema pallidum reveals a novel penicillin-binding protein. J Biol Chem 277:41857–41864 ArticleCASPubMed Google Scholar
Deka RK, Goldberg MS, Hagman KE, Norgard MV (2004a) The Tp38 (TpMglB-2) lipoprotein binds glucose in a manner consistent with receptor function in Treponema pallidum. J Bacteriol 186:2303–2308 ArticlePubMedPubMed CentralCAS Google Scholar
Deka RK, Neil L, Hagman KE, Machius M, Tomchick DR, Brautigam CA, Norgard MV (2004b) Structural evidence that the 32-kilodalton lipoprotein (Tp32) of Treponema pallidum is an L-methionine-binding protein. J Biol Chem 279:55644–55650 ArticleCASPubMed Google Scholar
Deka RK, Brautigam CA, Yang XF, Blevins JS, Machius M, Tomchick DR, Norgard MV (2006) The PnrA (Tp0319; TmpC) lipoprotein represents a new family of bacterial purine nucleoside receptor encoded within an ATP-binding cassette (ABC)-like operon in Treponema pallidum. J Biol Chem 281:8072–8081 ArticleCASPubMed Google Scholar
Deka RK, Brautigam CA, Tomson FL, Lumpkins SB, Tomchick DR, Machius M, Norgard MV (2007) Crystal structure of the Tp34 (TP0971) lipoprotein of Treponema pallidum: implications of its metal-bound state and affinity for human lactoferrin. J Biol Chem 282:5944–5958 ArticleCASPubMed Google Scholar
Deka RK, Brautigam CA, Goldberg M, Schuck P, Tomchick DR, Norgard MV (2012) Structural, bioinformatic, and in vivo analyses of two Treponema pallidum lipoproteins reveal a unique TRAP transporter. J Mol Biol 416:678–696 ArticlePubMedPubMed CentralCAS Google Scholar
Deka RK, Brautigam CA, Liu WZ, Tomchick DR, Norgard MV (2013) The TP0796 lipoprotein of Treponema pallidum is a bimetal-dependent FAD pyrophosphatase with a potential role in flavin homeostasis. J Biol Chem 288:11106–11121 ArticlePubMedPubMed CentralCAS Google Scholar
Desrosiers DC, Anand A, Luthra A, Dunham-Ems SM, LeDoyt M, Cummings MA, Eshghi A, Cameron CE, Cruz AR, Salazar JC, Caimano MJ, Radolf JD (2011) TP0326, a Treponema pallidum beta-barrel assembly machinery A (BamA) orthologue and rare outer membrane protein. Mol Microbiol 80:1496–1515 ArticlePubMedPubMed CentralCAS Google Scholar
Dorset DL, Engel A, Haner M, Massalski A, Rosenbusch JP (1983) Two-dimensional crystal packing of matrix porin. A channel forming protein in Escherichia coli outer membranes. J Mol Biol 165:701–710 ArticleCASPubMed Google Scholar
Douzi B, Filloux A, Voulhoux R (2012) On the path to uncover the bacterial type II secretion system. Philos Trans R Soc Lond B Biol Sci 367:1059–1072 ArticlePubMedPubMed CentralCAS Google Scholar
Dunn JP, Kenedy MR, Iqbal H, Akins DR (2015) Characterization of the β-barrel assembly machine accessory lipoproteins from Borrelia burgdorferi. BMC Microbiol 15:70 ArticlePubMedPubMed CentralCAS Google Scholar
Egli C, Leung WK, Muller KH, Hancock RE, McBride BC (1993) Pore-forming properties of the major 53-kilodalton surface antigen from the outer sheath of Treponema denticola. Infect Immun 61:1694–1699 PubMedPubMed CentralCAS Google Scholar
Ellen RP (2006) Virulence determinants of oral treponemes. In: Radolf JD, Lukehart SA (ed) Pathogenic treponema molecular and cellular biology, Norwich, UK, Caister Academic Press, pp. 357–386 Google Scholar
Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44:D279–D285 ArticleCASPubMed Google Scholar
Galdiero S, Falanga A, Cantisani M, Tarallo R, Della Pepa ME, D’Oriano V, Galdiero M (2012) Microbe-host interactions: structure and role of Gram-negative bacterial porins. Curr Protein Pept Sci 13:843–854 ArticlePubMedPubMed CentralCAS Google Scholar
Giacani L, Lukehart S, Centurion-Lara A (2007) Length of guanosine homopolymeric repeats modulates promoter activity of subfamily II tpr genes of Treponema pallidum ssp. pallidum. FEMS Immunol Med Microbiol 51:289–301 ArticlePubMedPubMed CentralCAS Google Scholar
Giacani L, Godornes C, Puray-Chavez M, Guerra-Giraldez C, Tompa M, Lukehart SA, Centurion-Lara A (2009) TP0262 is a modulator of promoter activity of tpr Subfamily II genes of Treponema pallidum ssp. pallidum. Mol Microbiol 72:1087–1099 ArticlePubMedPubMed CentralCAS Google Scholar
Giacani L, Molini BJ, Kim EY, Godornes BC, Leader BT, Tantalo LC, Centurion-Lara A, Lukehart SA (2010) Antigenic variation in Treponema pallidum: TprK sequence diversity accumulates in response to immune pressure during experimental syphilis. J Immunol 184:3822–3829 ArticlePubMedCAS Google Scholar
Giacani L, Brandt SL, Puray-Chavez M, Reid TB, Godornes C, Molini BJ, Benzler M, Hartig JS, Lukehart SA, Centurion-Lara A (2012) Comparative investigation of the genomic regions involved in antigenic variation of the TprK antigen among treponemal species, subspecies, and strains. J Bacteriol 194:4208–4225 ArticlePubMedPubMed CentralCAS Google Scholar
Giacani L, Brandt SL, Ke W, Reid TB, Molini BJ, Iverson-Cabral S, Ciccarese G, Drago F, Lukehart SA, Centurion-Lara A (2015) Transcription of TP0126, Treponema pallidum putative OmpW homolog, is regulated by the length of a homopolymeric guanosine repeat. Infect Immun 83:2275–2289 ArticlePubMedPubMed Central Google Scholar
Gray RR, Mulligan CJ, Molini BJ, Sun ES, Giacani L, Godornes C, Kitchen A, Lukehart SA, Centurion-Lara A (2006) Molecular evolution of the tprC, D, I, K, G, and J genes in the pathogenic genus Treponema. Mol Biol Evol 23:2220–2233 ArticleCASPubMed Google Scholar
Gu Y, Stansfeld PJ, Zeng Y, Dong H, Wang W, Dong C (2015) Lipopolysaccharide is inserted into the outer membrane through an intramembrane hole, a lumen gate, and the lateral opening of LptD. Structure 23:496–504 ArticlePubMedPubMed CentralCAS Google Scholar
Hardy PH Jr, Nell EE (1957) Study of the antigenic structure of Treponema pallidum by specific agglutination. Am J Hyg 66:160–172 PubMed Google Scholar
Hazlett KR, Sellati TJ, Nguyen TT, Cox DL, Clawson ML, Caimano MJ, Radolf JD (2001) The TprK protein of Treponema pallidum is periplasmic and is not a target of opsonic antibody or protective immunity. J Exp Med 193:1015–1026 ArticlePubMedPubMed CentralCAS Google Scholar
Hazlett KR, Cox DL, Decaffmeyer M, Bennett MP, Desrosiers DC, La Vake CJ, La Vake ME, Bourell KW, Robinson EJ, Brasseur R, Radolf JD (2005) TP0453, a concealed outer membrane protein of Treponema pallidum, enhances membrane permeability. J Bacteriol 187:6499–6508 ArticlePubMedPubMed CentralCAS Google Scholar
Hearn EM, Patel DR, van den Berg B (2008) Outer-membrane transport of aromatic hydrocarbons as a first step in biodegradation. Proc Natl Acad Sci U S A 105:8601–8606 ArticlePubMedPubMed Central Google Scholar
Heinz E, Lithgow T (2014) A comprehensive analysis of the Omp85/TpsB protein superfamily structural diversity, taxonomic occurrence, and evolution. Front Microbiol 5:370 ArticlePubMedPubMed Central Google Scholar
Hirano Y, Hossain MM, Takeda K, Tokuda H, Miki K (2007) Structural studies of the Cpx pathway activator NlpE on the outer membrane of Escherichia coli. Structure 15:963–976 ArticleCASPubMed Google Scholar
Hong H, Patel DR, Tamm LK, van den Berg B (2006) The outer membrane protein OmpW forms an eight-stranded b-barrel with a hydrophobic channel. J Biol Chem 281:7568–7577 ArticleCASPubMed Google Scholar
Houston S, Hof R, Honeyman L, Hassler J, Cameron CE (2012) Activation and proteolytic activity of the Treponema pallidum metalloprotease, pallilysin. PLoS Pathog 8:e1002822 ArticlePubMedPubMed CentralCAS Google Scholar
Houston S, Russell S, Hof R, Roberts AK, Cullen P, Irvine K, Smith DS, Borchers CH, Tonkin ML, Boulanger MJ, Cameron CE (2014) The multifunctional role of the pallilysin-associated Treponema pallidum protein, Tp0750, in promoting fibrinolysis and extracellular matrix component degradation. Mol Microbiol 91:618–634 ArticlePubMedPubMed CentralCAS Google Scholar
Hovind-Hougen K (1983) Morphology. In Schell RF, Musher DM (ed) Pathogenesis and immunology of treponemal infection, Marcel Dekker, New York, pp. 3–28 Google Scholar
Iqbal H, Kenedy MR, Lybecker M, Akins DR (2016) The TamB ortholog of Borrelia burgdorferi interacts with the beta-barrel assembly machine (BAM) complex protein BamA. Mol Microbiol Google Scholar
Izard J, Renken C, Hsieh CE, Desrosiers DC, Dunham-Ems S, La Vake C, Gebhardt LL, Limberger RJ, Cox DL, Marko M, Radolf JD (2009) Cryo-electron tomography elucidates the molecular architecture of Treponema pallidum, the syphilis spirochete. J Bacteriol 191:7566–7580 ArticlePubMedPubMed CentralCAS Google Scholar
Jones JD, Bourell KW, Norgard MV, Radolf JD (1995) Membrane topology of Borrelia burgdorferi and Treponema pallidum lipoproteins. Infect Immun 63:2424–2434 PubMedPubMed CentralCAS Google Scholar
Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A, Scheremetjew M, Yong SY, Lopez R, Hunter S (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30:1236–1240 ArticlePubMedPubMed CentralCAS Google Scholar
Juncker AS, Willenbrock H, Von Heijne G, Brunak S, Nielsen H, Krogh A (2003) Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci 12:1652–1662 ArticlePubMedPubMed CentralCAS Google Scholar
Kall L, Krogh A, Sonnhammer EL (2007) Advantages of combined transmembrane topology and signal peptide prediction–the Phobius web server. Nucleic Acids Res 35:W429–W432 ArticlePubMedPubMed Central Google Scholar
Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11:373–384 ArticlePubMedCAS Google Scholar
Ke W, Molini BJ, Lukehart SA, Giacani L (2015) Treponema pallidum subsp. pallidum TP0136 protein is heterogeneous among isolates and binds cellular and plasma fibronectin via its NH2-terminal end. PLoS Negl Trop Dis 9:e0003662 ArticlePubMedPubMed CentralCAS Google Scholar
Koronakis V, Sharff A, Koronakis E, Luisi B, Hughes C (2000) Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405:914–919 ArticlePubMedCAS Google Scholar
Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580 ArticlePubMedCAS Google Scholar
LaFond RE, Centurion-Lara A, Godornes C, Rompalo AM, Van Voorhis WC, Lukehart SA (2003) Sequence diversity of Treponema pallidum subsp. pallidum tprK in human syphilis lesions and rabbit-propagated isolates. J Bacteriol 185:6262–6268 ArticlePubMedPubMed CentralCAS Google Scholar
LaFond RE, Centurion-Lara A, Godornes C, Van Voorhis WC, Lukehart SA (2006a) TprK sequence diversity accumulates during infection of rabbits with Treponema pallidum subsp. pallidum Nichols strain. Infect Immun 74:1896–1906 ArticlePubMedPubMed CentralCAS Google Scholar
LaFond RE, Molini BJ, Van Voorhis WC, Lukehart SA (2006b) Antigenic variation of TprK V regions abrogates specific antibody binding in syphilis. Infect Immun 74:6244–6251 ArticlePubMedPubMed CentralCAS Google Scholar
Lee YH, Deka RK, Norgard MV, Radolf JD, Hasemann CA (1999) Treponema pallidum TroA is a periplasmic zinc-binding protein with a helical backbone. Nature Structural Biology 6:628–633 ArticlePubMedCAS Google Scholar
Lee YH, Dorwart MR, Hazlett KR, Deka RK, Norgard MV, Radolf JD, Hasemann CA (2002) The crystal structure of Zn(II)-free Treponema pallidum TroA, a periplasmic metal-binding protein, reveals a closed conformation. J Bacteriol 184:2300–2304 ArticlePubMedPubMed CentralCAS Google Scholar
Li W, Wen L, Li C, Chen R, Ye Z, Zhao J, Pan J (2016) Contribution of the outer membrane protein OmpW in Escherichia coli to complement resistance from binding to factor H. Microb Pathog 98:57–62 ArticlePubMedCAS Google Scholar
Lithgow KV, Hof R, Wetherell C, Phillips D, Houston S and Cameron CE (2017) A defined syphilis vaccine candidate inhibits dissemination of Treponema pallidum subps. pallidum. Nat Commun 8:14272 Google Scholar
Liu J, Lin T, Botkin DJ, McCrum E, Winkler H, Norris SJ (2009) Intact flagellar motor of Borrelia burgdorferi revealed by cryo-electron tomography: evidence for stator ring curvature and rotor/C-ring assembly flexion. J Bacteriol 191:5026–5036 ArticlePubMedPubMed CentralCAS Google Scholar
Liu J, Howell JK, Bradley SD, Zheng Y, Zhou ZH, Norris SJ (2010) Cellular architecture of Treponema pallidum: novel flagellum, periplasmic cone, and cell envelope as revealed by cryo electron tomography. J Mol Biol 403:546–561 ArticlePubMedPubMed CentralCAS Google Scholar
Lukehart SA, Miller JN (1978) Demonstration of the in vitro phagocytosis of Treponema pallidum by rabbit peritoneal macrophages. J Immunol 121:2014–2024 PubMedCAS Google Scholar
Lukehart SA, Shaffer JM, Baker-Zander SA (1992) A subpopulation of Treponema pallidum is resistant to phagocytosis: possible mechanism of persistence. J Infect Dis 166:1449–1453 ArticlePubMedCAS Google Scholar
Lukehart SA, Marra CM (2007) Isolation and laboratory maintenance of Treponema pallidum. Curr Protoc Microbiol Chapter 12:Unit 12A 11 Google Scholar
Luthra A, Zhu G, Desrosiers DC, Eggers CH, Mulay V, Anand A, McArthur FA, Romano FB, Caimano MJ, Heuck AP, Malkowski MG, Radolf JD (2011) The transition from closed to open conformation of Treponema pallidum outer membrane-associated lipoprotein TP0453 involves membrane sensing and integration by two amphipathic helices. J Biol Chem 286:41656–41668 ArticlePubMedPubMed CentralCAS Google Scholar
Luthra A, Anand A, Hawley KL, LeDoyt M, La Vake CJ, Caimano MJ, Cruz AR, Salazar JC, Radolf JD (2015a) A homology model reveals novel structural features and an immunodominant surface loop/opsonic target in the Treponema pallidum BamA ortholog TP_0326. J Bacteriol 197:1906–1920 ArticlePubMedPubMed CentralCAS Google Scholar
Luthra A, Anand A, Radolf JD (2015b) Treponema pallidum in gel microdroplets: A method for topological analysis of BamA (TP0326) and localization of rare outer membrane proteins. Methods Mol Biol 1329:67–75 ArticlePubMedCAS Google Scholar
Machius M, Brautigam CA, Tomchick DR, Ward P, Otwinowski Z, Blevins JS, Deka RK, Norgard MV (2007) Structural and biochemical basis for polyamine binding to the Tp0655 lipoprotein of Treponema pallidum: putative role for Tp0655 (TpPotD) as a polyamine receptor. J Mol Biol 373:681–694 ArticlePubMedPubMed CentralCAS Google Scholar
Magnuson HJ, Eagle H, Fleischman R (1948) The minimal infectious inoculum of Spirochaeta pallida (Nichols strain) and a consideration of its rate of multiplication in vivo. Am J Syph Gonorrhea Vener Dis 32:1–18 CASPubMed Google Scholar
Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, He J, Gwadz M, Hurwitz DI, Lanczycki CJ, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Bryant SH (2015) CDD: NCBI’s conserved domain database. Nucleic Acids Res 43:D222–D226 ArticleCASPubMed Google Scholar
Morgan CA, Lukehart SA, Van Voorhis WC (2002a) Immunization with the N-terminal portion of Treponema pallidum repeat protein K attenuates syphilitic lesion development in the rabbit model. Infect Immun 70:6811–6816 ArticlePubMedPubMed CentralCAS Google Scholar
Morgan CA, Molini BJ, Lukehart SA, Van Voorhis WC (2002b) Segregation of B and T cell epitopes of Treponema pallidum repeat protein K to variable and conserved regions during experimental syphilis infection. J Immunol 169:952–957 ArticleCASPubMed Google Scholar
Morgan CA, Lukehart SA, Van Voorhis WC (2003) Protection against syphilis correlates with specificity of antibodies to the variable regions of Treponema pallidum repeat protein K. Infect Immun 71:5605–5612 ArticlePubMedPubMed CentralCAS Google Scholar
Myint M, Bashiri H, Harrington RD, Marra CM (2004) Relapse of secondary syphilis after benzathine penicillin G: molecular analysis. Sex Transm Dis 31:196–199 ArticlePubMed Google Scholar
Nandi B, Nandy RK, Sarkar A, Ghose AC (2005) Structural features, properties and regulation of the outer-membrane protein W (OmpW) of Vibrio cholerae. Microbiology 151:2975–2986 ArticleCASPubMed Google Scholar
Narita S, Tokuda H (2007) Amino acids at positions 3 and 4 determine the membrane specificity of Pseudomonas aeruginosa lipoproteins. J Biol Chem 282:13372–13378 ArticleCASPubMed Google Scholar
Nath A, Atkins WM, Sligar SG (2007) Applications of phospholipid bilayer nanodiscs in the study of membranes and membrane proteins. Biochemistry 46:2059–2069 ArticleCASPubMed Google Scholar
Nelson RA Jr, Mayer MM (1949) Immobilization of Treponema pallidum in vitro by antibody produced in syphilitic infection. J Exp Med 89:369–393 ArticlePubMedPubMed Central Google Scholar
Nikaido H, Takatsuka Y (2009) Mechanisms of RND multidrug efflux pumps. Biochim Biophys Acta 1794:769–781 ArticlePubMedCAS Google Scholar
Noinaj N, Kuszak AJ, Gumbart JC, Lukacik P, Chang H, Easley NC, Lithgow T, Buchanan SK (2013) Structural insight into the biogenesis of β-barrel membrane proteins. Nature 501:385–390 ArticlePubMedPubMed CentralCAS Google Scholar
Norgard MV, Miller JN (1983) Cloning and expression of Treponema pallidum (Nichols) antigen genes in Escherichia coli. Infect Immun 42:435–445 PubMedPubMed CentralCAS Google Scholar
Norris SJ, Cox DL, Weinstock GM (2001) Biology of Treponema pallidum: correlation of functional activities with genome sequence data. J Mol Microbiol Biotechnol 3:37–62 PubMedCAS Google Scholar
Okuda S, Sherman DJ, Silhavy TJ, Ruiz N, Kahne D (2016) Lipopolysaccharide transport and assembly at the outer membrane: the PEZ model. Nat Rev Microbiol 14:337–345 ArticlePubMedPubMed CentralCAS Google Scholar
Ou YY, Gromiha MM, Chen SA, Suwa M (2008) TMBETADISC-RBF: Discrimination of b-barrel membrane proteins using RBF networks and PSSM profiles. Comput Biol Chem 32:227–231 ArticlePubMedCAS Google Scholar
Parker ML, Houston S, Petrosova H, Lithgow KV, Hof R, Wetherell C, Kao WC, Lin YP, Moriarty TJ, Ebady R, Cameron CE, Boulanger MJ (2016) The structure of Treponema pallidum Tp0751 (Pallilysin) reveals a non-canonical lipocalin fold that mediates adhesion to extracellular matrix components and interactions with host cells. PLoS Pathog 12:e1005919 ArticlePubMedPubMed CentralCAS Google Scholar
Penn CW, Cockayne A, Bailey MJ (1985) The outer membrane of Treponema pallidum: biological significance and biochemical properties. J Gen Microbiol 131:2349–2357 PubMedCAS Google Scholar
Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786 ArticlePubMedCAS Google Scholar
Petrosova H, Zobanikova M, Cejkova D, Mikalova L, Pospisilova P, Strouhal M, Chen L, Qin X, Muzny DM, Weinstock GM, Smajs D (2012) Whole genome sequence of Treponema pallidum ssp. pallidum, strain Mexico A, suggests recombination between yaws and syphilis strains. PLoS Negl Trop Dis 6:e1832 ArticlePubMedPubMed CentralCAS Google Scholar
Phan G, Picard M, Broutin I (2015) Focus on the Outer Membrane Factor OprM, the Forgotten Player from Efflux Pumps Assemblies. Antibiotics (Basel) 4:544–566 ArticleCAS Google Scholar
Pinto M, Borges V, Antelo M, Pinheiro M, Nunes A, Azevedo J, Borrego MJ, Mendonca J, Carpinteiro D, Vieira L, Gomes JP (2016) Genome-scale analysis of the non-cultivable Treponema pallidum reveals extensive within-patient genetic variation. Nat Microbiol 2:16190 ArticleCASPubMed Google Scholar
Porcella SF, Popova TG, Hagman KE, Penn CW, Radolf JD, Norgard MV (1996) A mgl-like operon in Treponema pallidum, the syphilis spirochete. Gene 177:115–121 ArticleCASPubMed Google Scholar
Purcell BK, Swancutt MA, Radolf JD (1990) Lipid modification of the 15 kiloDalton major membrane immunogen of Treponema pallidum. Mol Microbiol 4:1371–1379 ArticleCASPubMed Google Scholar
Radolf JD, Fehniger TE, Silverblatt FJ, Miller JN, Lovett MA (1986) The surface of virulent Treponema pallidum: resistance to antibody binding in the absence of complement and surface association of recombinant antigen 4D. Infect Immun 52:579–585 PubMedPubMed CentralCAS Google Scholar
Radolf JD, Chamberlain NR, Clausell A, Norgard MV (1988) Identification and localization of integral membrane proteins of virulent Treponema pallidum subsp. pallidum by phase partitioning with the nonionic detergent triton X-114. Infect Immun 56:490–498 PubMedPubMed CentralCAS Google Scholar
Radolf JD, Moomaw C, Slaughter CA, Norgard MV (1989a) Penicillin-binding proteins and peptidoglycan of Treponema pallidum subsp. pallidum. Infect Immun 57:1248–1254 PubMedPubMed CentralCAS Google Scholar
Radolf JD, Norgard MV, Schulz WW (1989b) Outer membrane ultrastructure explains the limited antigenicity of virulent Treponema pallidum. Proc Natl Acad Sci U S A 86:2051–2055 ArticlePubMedPubMed CentralCAS Google Scholar
Radolf JD, Bourell KW, Akins DR, Brusca JS, Norgard MV (1994) Analysis of Borrelia burgdorferi membrane architecture by freeze-fracture electron microscopy. J Bacteriol 176:21–31 ArticlePubMedPubMed CentralCAS Google Scholar
Radolf JD (1995) Treponema pallidum and the quest for outer membrane proteins. Mol Microbiol 16:1067–1073 ArticleCASPubMed Google Scholar
Radolf JD, Goldberg MS, Bourell K, Baker SI, Jones JD, Norgard MV (1995a) Characterization of outer membranes isolated from Borrelia burgdorferi, the Lyme disease spirochete. Infect Immun 63:2154–2163 PubMedPubMed CentralCAS Google Scholar
Radolf JD, Robinson EJ, Bourell KW, Akins DR, Porcella SF, Weigel LM, Jones JD, Norgard MV (1995b) Characterization of outer membranes isolated from Treponema pallidum, the syphilis spirochete. Infect Immun 63:4244–4252 PubMedPubMed CentralCAS Google Scholar
Radolf JD, Lukehart SA (2006) Immunology of Syphilis. In Radolf JD, Lukehart SA (ed) Pathogenic Treponemes: Cellular and Molecular Biology, Caister Academic Press, Norfolk, UK, pp 285–322 Google Scholar
Radolf JD, Hazlett KRO, Lukehart SA (2006). Pathogenesis of Syphilis. In Radolf JD, Lukehart SA (ed) Pathogenic Treponemes: Cellular and Molecular Biology, Caister Academic Press, Norfolk, UK, pp. 197–236 Google Scholar
Radolf JD, Caimano MJ, Stevenson B, Hu LT (2012) Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat Rev Microbiol 10:87–99 ArticlePubMedPubMed CentralCAS Google Scholar
Radolf JD, Tramont EC, Salazar JC (2014) Syphilis (Treponema pallidum). In Bennett JE, Dolin R, Blaser MJ (ed) Mandell, Douglas and Bennett’s principles and practice of infectious diseases, Churchill Livingtone, Elsevier, Philadelphia, pp. 2684–2709 Google Scholar
Radolf JD, Deka RK, Anand A, Smajs D, Norgard MV, Yang XF (2016) Treponema pallidum, the syphilis spirochete: making a living as a stealth pathogen. Nat Rev Microbiol 14:744–759 ArticlePubMedPubMed CentralCAS Google Scholar
Randall A, Cheng J, Sweredoski M, Baldi P (2008) TMBpro: secondary structure, beta-contact and tertiary structure prediction of transmembrane beta-barrel proteins. Bioinformatics 24:513–520 ArticleCASPubMed Google Scholar
Reid TB, Molini BJ, Fernandez MC, Lukehart SA (2014) Antigenic variation of TprK facilitates development of secondary syphilis. Infect Immun 82:4959–4967 ArticlePubMedPubMed CentralCAS Google Scholar
Rollauer SE, Sooreshjani MA, Noinaj N, Buchanan SK (2015). Outer membrane protein biogenesis in Gram-negative bacteria. Philos Trans R Soc Lond B Biol Sci 370 Google Scholar
Salazar JC, Hazlett KR, Radolf JD (2002) The immune response to infection with Treponema pallidum, the stealth pathogen. Microbes Infect 4:1133–1140 ArticleCASPubMed Google Scholar
Sassone-Corsi M, Raffatellu M (2015) No vacancy: how beneficial microbes cooperate with immunity to provide colonization resistance to pathogens. J Immunol 194:4081–4087 ArticlePubMedCAS Google Scholar
Selkrig J, Belousoff MJ, Headey SJ, Heinz E, Shiota T, Shen HH, Beckham SA, Bamert RS, Phan MD, Schembri MA, Wilce MC, Scanlon MJ, Strugnell RA, Lithgow T (2015) Conserved features in TamA enable interaction with TamB to drive the activity of the translocation and assembly module. Sci rep 5:12905 ArticlePubMedPubMed CentralCAS Google Scholar
Sena AC, Pillay A, Cox DL, Radolf JD (2015). Treponema and Brachyspira, human host-associated spirochetes. In Jorgensen JH, Pfaller MA, Carroll KC, Funke G, Landry ML, Richter SS, Warnock DW (ed) Manual of Clinical Microbiology, ASM Press, Washington, D.C, pp. 1055–1081 Google Scholar
Setubal JC, Reis M, Matsunaga J, Haake DA (2006) Lipoprotein computational prediction in spirochaetal genomes. Microbiology 152:113–121 ArticlePubMedCAS Google Scholar
Shao L, Kinnally KW, Mannella CA (1996) Circular dichroism studies of the mitochondrial channel, VDAC, from Neurospora crassa. Biophys J 71:778–786 ArticlePubMedPubMed CentralCAS Google Scholar
Shevchenko DV, Akins DR, Robinson EJ, Li M, Shevchenko OV, Radolf JD (1997) Identification of homologs for thioredoxin, peptidyl prolyl cis-trans isomerase, and glycerophosphodiester phosphodiesterase in outer membrane fractions from Treponema pallidum, the syphilis spirochete. Infect Immun 65:4179–4189 PubMedPubMed CentralCAS Google Scholar
Shevchenko DV, Sellati TJ, Cox DL, Shevchenko OV, Robinson EJ, Radolf JD (1999) Membrane topology and cellular location of the Treponema pallidum glycerophosphodiester phosphodiesterase (GlpQ) ortholog. Infect Immun 67:2266–2276 PubMedPubMed CentralCAS Google Scholar
Smajs D, Norris SJ, Weinstock GM (2012) Genetic diversity in Treponema pallidum: implications for pathogenesis, evolution and molecular diagnostics of syphilis and yaws. Infect Genet Evol 12:191–202 ArticlePubMed Google Scholar
Smith SG, Mahon V, Lambert MA, Fagan RP (2007) A molecular Swiss army knife: OmpA structure, function and expression. FEMS Microbiol Lett 273:1–11 ArticleCASPubMed Google Scholar
Stamm LV, Bergen HL (2000) The sequence-variable, single-copy tprK gene of Treponema pallidum Nichols strain UNC and Street strain 14 encodes heterogeneous TprK proteins. Infect Immun 68:6482–6486 ArticlePubMedPubMed CentralCAS Google Scholar
Stamm LV, Folds JD, Bassford PJ Jr (1982) Expression of Treponema pallidum antigens in Escherichia coli K-12. Infect Immun 36:1238–1241 PubMedPubMed CentralCAS Google Scholar
Stamm LV, Greene SR, Bergen HL, Hardham JM, Barnes NY (1998) Identification and sequence analysis of Treponema pallidum tprJ, a member of a polymorphic multigene family. FEMS Microbiol Lett 169:155–163 ArticleCASPubMed Google Scholar
Sun ES, Molini BJ, Barrett LK, Centurion-Lara A, Lukehart SA, Van Voorhis WC (2004) Subfamily I Treponema pallidum repeat protein family: sequence variation and immunity. Microbes Infect 6:725–737 ArticleCASPubMed Google Scholar
Swancutt MA, Radolf JD, Norgard MV (1990) The 34-kilodalton membrane immunogen of Treponema pallidum is a lipoprotein. Infect Immun 58:384–392 PubMedPubMed CentralCAS Google Scholar
Tokunaga M, Loranger JM, Wu HC (1984) A distinct signal peptidase for prolipoprotein in Escherichia coli. J Cell Biochem 24:113–120 ArticleCASPubMed Google Scholar
Tsirigos KD, Peters C, Shu N, Kall L, Elofsson A (2015) The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides. Nucleic Acids Res 43:W401–W407 ArticlePubMedPubMed CentralCAS Google Scholar
Turner TB, Hollander DH (1957) Biology of the treponematoses. World Health Organization, Geneva Google Scholar
van den Berg B (2005) The FadL family: unusual transporters for unusual substrates. Curr Opin Struct Biol 15:401–407 ArticleCASPubMed Google Scholar
van den Berg B, Black PN, Clemons WM Jr, Rapoport TA (2004) Crystal structure of the long-chain fatty acid transporter FadL. Science 304:1506–1509 ArticleCASPubMed Google Scholar
Walfield AM, Hanff PA, Lovett MA (1982) Expression of Treponema pallidum antigens in Escherichia coli. Science 216:522–523 ArticleCASPubMed Google Scholar
Walker EM, Zampighi GA, Blanco DR, Miller JN, Lovett MA (1989) Demonstration of rare protein in the outer membrane of Treponema pallidum subsp. pallidum by freeze-fracture analysis. J Bacteriol 171:5005–5011 ArticlePubMedPubMed CentralCAS Google Scholar
Webb CT, Heinz E, Lithgow T (2012) Evolution of the beta-barrel assembly machinery. Trends Microbiol 20:612–620 ArticlePubMedCAS Google Scholar
Weigel LM, Brandt ME, Norgard MV (1992) Analysis of the N-terminal region of the 47-kilodalton integral membrane lipoprotein of Treponema pallidum. Infect Immun 60:1568–1576 PubMedPubMed CentralCAS Google Scholar
Weigel LM, Radolf JD, Norgard MV (1994) The 47-kDa major lipoprotein immunogen of Treponema pallidum is a penicillin-binding protein with carboxypeptidase activity. Proc Natl Acad Sci U S A 91:11611–11615 ArticlePubMedPubMed CentralCAS Google Scholar
Whitfield C, Trent MS (2014) Biosynthesis and export of bacterial lipopolysaccharides. struct Rev Biochem 83:99–128 ArticleCAS Google Scholar
Wu XB, Tian LH, Zou HJ, Wang CY, Yu ZQ, Tang CH, Zhao FK, Pan JY (2013) Outer membrane protein OmpW of Escherichia coli is required for resistance to phagocytosis. Res Microbiol 164:848–855 ArticlePubMedCAS Google Scholar
Yang J, Zhang Y (2015) Protein structure and function prediction using I-TASSER. Curr Protoc Bioinform 52:5 8 1–15 Google Scholar
Yonehara R, Yamashita E, Nakagawa A (2016) Crystal structures of OprN and OprJ, outer membrane factors of multidrug tripartite efflux pumps of Pseudomonas aeruginosa. Proteins 84:759–769 ArticlePubMedCAS Google Scholar
Yu CS, Chen YC, Lu CH, Hwang JK (2006) Prediction of protein subcellular localization. Proteins 64:643–651 ArticlePubMedCAS Google Scholar
Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, Dao P, Sahinalp SC, Ester M, Foster LJ, Brinkman FS (2010) PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26:1608–1615 ArticlePubMedPubMed CentralCAS Google Scholar
Zeth K, Thein M (2010) Porins in prokaryotes and eukaryotes: common themes and variations. Biochem J 431:13–22 ArticlePubMedCAS Google Scholar
Zuckert WR (2014) Secretion of bacterial lipoproteins: through the cytoplasmic membrane, the periplasm and beyond. Biochim Biophys Acta 1843:1509–1516 ArticlePubMedPubMed CentralCAS Google Scholar