Geometrical Formulation of Quantum Mechanics (original) (raw)

References

  1. G. C. Ghirardi, A. Rimini, and T. Weber, “Unified dynamics for microscopic and macroscopic systems,” Phys. Rev. D34, 470–491 (1986).
    MathSciNet ADS Google Scholar
  2. P. Pearle, “Combining stochastic dynamical state reduction with spontaneous localization,” Phys. Rev. A39, 2277–2289 (1989).
    ADS Google Scholar
  3. G. C. Ghirardi, R. Grassi and A. Rimini, “Continuous spontaneous reduction involving gravity,” Phys. Rev. A42, 1057–1064 (1990).
    ADS Google Scholar
  4. J. S. Bell, “Introduction to the hidden-variable question,” in Proceedings of the international school of physics Enrico Fermi, course IL: Foundations of quantum mechanics, (Academic Press, New York, 1971).
    Google Scholar
  5. I. Bialynicki-Birula and J. Mycielski, “Nonlinear wave mechanics,” Ann. Phys. New York 100, 62–93 (1976).
    Article MathSciNet ADS Google Scholar
  6. P. Pearle, “Reduction of a state vector by a non-linear Schrödinger equation,” Phys. Rev. D13, 857–868 (1976).
    MathSciNet ADS Google Scholar
  7. S. Weinberg, “Testing quantum mechanics,” Ann. Phys_._ New York 194, 336–386 (1989).
    Article MathSciNet ADS Google Scholar
  8. P. Pearle, “Towards a relativistic theory of state vector reduction,” in Sixty-two years of uncertainty, Ed A. I. Miller _(_Plenum Press, New York, 1990).
    Google Scholar
  9. J. S. Bell, Speakable and unspeakable in quantum mechanics (Cambridge University Press, Cambridge, 1987).
    MATH Google Scholar
  10. A. Ashtekar and J. Stachel, Conceptual problems of quantum gravity (Birkhäuser, Boston, 1991).
    MATH Google Scholar
  11. K. V. Kuchat, “Time and interpretations of quantum gravity,” in Proceedings of the 4th Canadian conference on general relativity and relativistic astrophysics, Eds. G. Kunstatter, D. Vincent, and J. Williams (World Scientific, Singapore, 1992).
    Google Scholar
  12. C. J. Isham, “Canonical quantum gravity and the problem of time,” in Integrable systems, quantum groups and quantum field theory, Eds. L. A. Ibart and M. A. Rodrigues (Kluwer, Dordrecht, 1992).
    Google Scholar
  13. R. Penrose, Emperor’s new mind: Concerning computers, minds and the laws of physics (Oxford University Press, Oxford 1989).
    Google Scholar
  14. M. Gell-Mann and J. B. Hartle, “Classical equations for quantum systems,” Phys. Rev. D47, 3345–3382 (1993).
    MathSciNet ADS Google Scholar
  15. C. J. Isham, “Quantum logic and the histories approaches to quantum theory,” J. Math. Phys. 35, 2157–2185 (1994).
    Article MathSciNet ADS MATH Google Scholar
  16. Troy A. Schilling, Geometry of quantum mechanics, doctoral thesis (The Pennsylvania State University 1996).
    Google Scholar
  17. T. W. B. Kibble, “Geometrization of Quantum Mechanics,” Commun. Math. Phys. 65, 189–201 (1979).
    Article MathSciNet ADS MATH Google Scholar
  18. A. M. Perelomov, Generalized coherent states and their applications (Springer-Verlag, New York, 1986).
    Book MATH Google Scholar
  19. A. M. Perelomov, Commun. Math. Phys. 26, 222 (1972).
    Article MathSciNet ADS MATH Google Scholar
  20. R. Gilmore, Ann. Phys. New York 74, 391 (1972).
    Article MathSciNet Google Scholar
  21. J. R. Klauder_1 Math. Phys._ 4, 1055 (1963),i Math. Phys. 4, 1058 (1963).
    Article MathSciNet ADS Google Scholar
  22. R. Penrose and W. Rindler, Spinors and space-time, vol 1 (Cambridge University Press, Cambridge, 1985).
    Google Scholar
  23. A. Ashtekar, G. T. Horowitz, and A. Magnon-Ashtekar, “A generalization of tensor calculus and its applications to physics,” Gen. Rel. Gray. 14, 411–428 (1982).
    Article MathSciNet ADS MATH Google Scholar
  24. A. Heslot, “Quantum mechanics as a classical theory,” Phys, Rev. D31, 1341–1348 (1985).
    MathSciNet Google Scholar
  25. J. Anandan and Y. Aharonov, “Geometry of quantum evolution,” Phys. Rev. Lett. 65, 1697–1700 (1990).
    Article MathSciNet ADS MATH Google Scholar
  26. G. W. Gibbons, “Typical states and density matrices,” Jour. Geom. Phys. 8, 147–162 (1992).
    Article MathSciNet ADS MATH Google Scholar
  27. L. P. Hughston, “Geometric aspects of quantum mechanics,” in Twistor Theory, Ed. S. A. Huggett, (Marcel Dekker, New York, 1995).
    Google Scholar
  28. L. P. Hughston, “Geometry of stochastic state vector reduction,” Proc. R. Soc. Lond. A452, 953–979 (1996).
    MathSciNet ADS Google Scholar
  29. R. Cirelli, A. Manià, and L. Pizzocchero, “Quantum mechanics as an infinite-dimensional Hamiltonian system with uncertainty structure: Part I,” J. Math. Phys. 31, 2891–2897 (1990).
    Article MathSciNet ADS MATH Google Scholar
  30. R. Cirelli, A. Manià, and L. Pizzocchero, “Quantum mechanics as an infinite-dimensional Hamiltonian system with uncertainty structure: Part II,” J. Math. Phys. 31, 2898–2903 (1990).
    Article ADS MATH Google Scholar
  31. P. R. Chernoff, J. E. Marsden, Properties of infinite-dimensional Hamiltonian systems (Springer-Verlag, Berlin, 1974).
    MATH Google Scholar
  32. R. Shankar_Principles of quantum mechanics_, Chapter 9 (Plenum Press, New York, 1980).
    Google Scholar
  33. P. A. M. Dirac, Lectures in quantum mechanics (Yeshiva University Press, New York, 1964).
    Google Scholar
  34. R. Geroch, “A method for generating solutions of Einstein’s equations,”J. Math. Phys. 12,918–924 (1971).
    Article MathSciNet ADS MATH Google Scholar
  35. R. M. Wald, General relativity (The University of Chicago Press, Chicago, 1984).
    MATH Google Scholar
  36. A. Ashtekar and A. Magnon-Ashtekar, “A technique for analyzing the structure of isometries,” J. Math. Phys. 19, 1567–1572 (1978).
    Article MathSciNet ADS MATH Google Scholar
  37. M. Reed and B. Simon, Methods of modern mathematical physics, v. I, Functional analysis (Academic Press, 1980).
    Google Scholar
  38. K. Yano, Structures on manifolds (World Scientific, Singapore, 1984).
    MATH Google Scholar
  39. W.-M. Zhang, “Coherent states: Theory and some applications,” Rev. Mod. Phys. 62, 867–927 (1990).
    Article ADS Google Scholar
  40. H. Goldstein, Classical Mechanics (Addison-Wesley, Reading, MA, 1981).
    Google Scholar
  41. C. Lanczos, The variational principles of mechanics (Dover Publications, New York, 1970).
    MATH Google Scholar

Download references