Geometrical Formulation of Quantum Mechanics (original) (raw)
References
G. C. Ghirardi, A. Rimini, and T. Weber, “Unified dynamics for microscopic and macroscopic systems,” Phys. Rev. D34, 470–491 (1986). MathSciNetADS Google Scholar
P. Pearle, “Combining stochastic dynamical state reduction with spontaneous localization,” Phys. Rev. A39, 2277–2289 (1989). ADS Google Scholar
G. C. Ghirardi, R. Grassi and A. Rimini, “Continuous spontaneous reduction involving gravity,” Phys. Rev.A42, 1057–1064 (1990). ADS Google Scholar
J. S. Bell, “Introduction to the hidden-variable question,” in Proceedings of the international school of physics Enrico Fermi, course IL: Foundations of quantum mechanics, (Academic Press, New York, 1971). Google Scholar
I. Bialynicki-Birula and J. Mycielski, “Nonlinear wave mechanics,” Ann. Phys. New York 100, 62–93 (1976). ArticleMathSciNetADS Google Scholar
P. Pearle, “Reduction of a state vector by a non-linear Schrödinger equation,” Phys. Rev. D13, 857–868 (1976). MathSciNetADS Google Scholar
P. Pearle, “Towards a relativistic theory of state vector reduction,” in Sixty-two years of uncertainty, Ed A. I. Miller _(_Plenum Press, New York, 1990). Google Scholar
J. S. Bell, Speakable and unspeakable in quantum mechanics (Cambridge University Press, Cambridge, 1987). MATH Google Scholar
A. Ashtekar and J. Stachel, Conceptual problems of quantum gravity (Birkhäuser, Boston, 1991). MATH Google Scholar
K. V. Kuchat, “Time and interpretations of quantum gravity,” in Proceedings of the 4th Canadian conference on general relativity and relativistic astrophysics, Eds. G. Kunstatter, D. Vincent, and J. Williams (World Scientific, Singapore, 1992). Google Scholar
C. J. Isham, “Canonical quantum gravity and the problem of time,” in Integrable systems, quantum groups and quantum field theory, Eds. L. A. Ibart and M. A. Rodrigues (Kluwer, Dordrecht, 1992). Google Scholar
R. Penrose, Emperor’s new mind: Concerning computers, minds and the laws of physics (Oxford University Press, Oxford 1989). Google Scholar
M. Gell-Mann and J. B. Hartle, “Classical equations for quantum systems,” Phys. Rev.D47, 3345–3382 (1993). MathSciNetADS Google Scholar
R. Penrose and W. Rindler, Spinors and space-time, vol 1 (Cambridge University Press, Cambridge, 1985). Google Scholar
A. Ashtekar, G. T. Horowitz, and A. Magnon-Ashtekar, “A generalization of tensor calculus and its applications to physics,” Gen. Rel. Gray.14, 411–428 (1982). ArticleMathSciNetADSMATH Google Scholar
A. Heslot, “Quantum mechanics as a classical theory,” Phys, Rev.D31, 1341–1348 (1985). MathSciNet Google Scholar
L. P. Hughston, “Geometric aspects of quantum mechanics,” in Twistor Theory, Ed. S. A. Huggett, (Marcel Dekker, New York, 1995). Google Scholar
L. P. Hughston, “Geometry of stochastic state vector reduction,” Proc. R.Soc. Lond.A452, 953–979 (1996). MathSciNetADS Google Scholar
R. Cirelli, A. Manià, and L. Pizzocchero, “Quantum mechanics as an infinite-dimensional Hamiltonian system with uncertainty structure: Part I,”J. Math. Phys.31, 2891–2897 (1990). ArticleMathSciNetADSMATH Google Scholar
R. Cirelli, A. Manià, and L. Pizzocchero, “Quantum mechanics as an infinite-dimensional Hamiltonian system with uncertainty structure: Part II,” J. Math. Phys.31, 2898–2903 (1990). ArticleADSMATH Google Scholar
P. R. Chernoff, J. E. Marsden, Properties of infinite-dimensional Hamiltonian systems (Springer-Verlag, Berlin, 1974). MATH Google Scholar
R. Shankar_Principles of quantum mechanics_, Chapter 9 (Plenum Press, New York, 1980). Google Scholar
P. A. M. Dirac, Lectures in quantum mechanics (Yeshiva University Press, New York, 1964). Google Scholar
R. M. Wald, General relativity (The University of Chicago Press, Chicago, 1984). MATH Google Scholar
A. Ashtekar and A. Magnon-Ashtekar, “A technique for analyzing the structure of isometries,” J. Math. Phys.19, 1567–1572 (1978). ArticleMathSciNetADSMATH Google Scholar
M. Reed and B. Simon, Methods of modern mathematical physics, v. I, Functional analysis (Academic Press, 1980). Google Scholar
K. Yano, Structures on manifolds (World Scientific, Singapore, 1984). MATH Google Scholar
W.-M. Zhang, “Coherent states: Theory and some applications,” Rev. Mod. Phys.62, 867–927 (1990). ArticleADS Google Scholar
H. Goldstein, Classical Mechanics (Addison-Wesley, Reading, MA, 1981). Google Scholar
C. Lanczos, The variational principles of mechanics (Dover Publications, New York, 1970). MATH Google Scholar