Monte-Carlo Proof-Number Search for Computer Go (original) (raw)

Abstract

In the last decade, proof-number search and Monte-Carlo methods have successfully been applied to the combinatorial-games domain. Proof-number search is a reliable algorithm. It requires a well defined goal to prove. This can be seen as a disadvantage. In contrast to proof-number search, Monte-Carlo evaluation is a flexible stochastic evaluation for game-tree search. In order to improve the efficiency of proof-number search, we introduce a new algorithm, Monte-Carlo Proof-Number search. It enhances proof-number search by adding the flexible Monte-Carlo evaluation. We present the new algorithm and evaluate it on a sub-problem of Go, the Life-and-Death problem. The results show a clear improvement in time efficiency and memory usage: the test problems are solved two times faster and four times less nodes are expanded on average. Future work will assess possibilities to extend this method to other enhanced Proof-Number techniques.

Preview

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Game Solvers

Chapter © 2017

References

  1. Allis, L.V., van der Meulen, M., van den Herik, H.J.: Proof-Number Search. Artificial Intelligence 66, 91–124 (1994)
    Article MATH MathSciNet Google Scholar
  2. Bouzy, B., Helmstetter, B.: Monte Carlo Developments. In: van den Herik, H.J., Iida, H., Heinz, E.A. (eds.) 10th Advances in Computer Games (ACG10), Many Games, Many Challenges, pp. 159–174. Kluwer Academic Publishers, Dordrecht (2004)
    Google Scholar
  3. Bouzy, B.: Associating Shallow and Selective Global Tree Search with Monte Carlo for 9×9 Go. In: van den Herik, H.J., Björnsson, Y., Netanyahu, N.S. (eds.) CG 2004. LNCS, vol. 3846, pp. 76–80. Springer, Heidelberg (2006)
    Chapter Google Scholar
  4. Bouzy, B.: History and Territory Heuristics for Monte-Carlo Go. In: Chen, K., et al. (eds.) Joint Conference on Information Sciences JCIS 2005, p. 4 (2005)
    Google Scholar
  5. Breuker, D.M.: Memory versus Search. PhD thesis, Maastricht University (1998)
    Google Scholar
  6. Brügmann, B.: Monte Carlo Go. White paper (1993)
    Google Scholar
  7. Cazenave, T., Helmstetter, B.: Search for Transitive Connection. Information Sciences 132(1), 93–103 (2004)
    Google Scholar
  8. Kishimoto, A.: Correct and Efficient Search Algorithms in the Presence of Repetitions. PhD thesis, University of Alberta (2005)
    Google Scholar
  9. Kishimoto, A., Müller, M.: DF-PN in Go: Application to the One-Eye Problem. In: van den Herik, H.J., Iida, H., Heinz, E.A. (eds.) 10th Advances in Computer Games (ACG10), Many Games, Many Challenges, pp. 125–141. Kluwer Academic Publishers, Dordrecht (2003)
    Google Scholar
  10. Nagai, A.: Df-pn Algorithm for Searching AND/OR Trees and Its Applications. PhD thesis, University of Tokio (2002)
    Google Scholar
  11. Schaeffer, J., Björnsson, Y., Burch, N., Kishimoto, A., Muller, M., Lake, R., Lu, P., Sutphen, S.: Solving Checkers. In: International Joint Conference on Artificial Intelligence (IJCAI), pp. 292–297 (2005)
    Google Scholar
  12. Seo, M., Iida, H., Uiterwijk, J.W.H.M.: The PN*-Search Algorithm: Application to Tsume-Shogi. Artificial Intelligence 129(1-2), 253–277 (2001)
    Article MATH MathSciNet Google Scholar
  13. Sheppard, B.: Efficient Control of Selective Simulations. ICGA Journal 27(3), 67–80 (2005)
    MathSciNet Google Scholar
  14. van der Steen, J.: GoBase.org website (2006), http://www.gobase.org
  15. Winands, M.H.M., Uiterwijk, J.W.H.M., van den Herik, H.J.: An Effective Two-Level Proof-Number Search Algorithm. Theoretical Computer Science 313(3), 511–525 (2004)
    Article MATH MathSciNet Google Scholar
  16. Wolf, Th.: Forward Pruning and Other Heuristic Search Techniques in Tsume Go. Information Sciences 122(1), 59–76 (2000)
    Article Google Scholar
  17. Zobrist, A.L.: A New Hashing Method with Application for Game Playing. ICCA Journal 13(2), 69–73 (1990)
    Google Scholar

Download references

Author information

Authors and Affiliations

  1. MICC-IKAT, Maastricht University, Maastricht, The Netherlands
    Jahn-Takeshi Saito, Guillaume Chaslot, Jos W. H. M. Uiterwijk & H. Jaap van den Herik

Authors

  1. Jahn-Takeshi Saito
    You can also search for this author inPubMed Google Scholar
  2. Guillaume Chaslot
    You can also search for this author inPubMed Google Scholar
  3. Jos W. H. M. Uiterwijk
    You can also search for this author inPubMed Google Scholar
  4. H. Jaap van den Herik
    You can also search for this author inPubMed Google Scholar

Editor information

H. Jaap van den Herik Paolo Ciancarini H. H. L. M. (Jeroen) Donkers

Rights and permissions

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Saito, JT., Chaslot, G., Uiterwijk, J.W.H.M., van den Herik, H.J. (2007). Monte-Carlo Proof-Number Search for Computer Go. In: van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M.(. (eds) Computers and Games. CG 2006. Lecture Notes in Computer Science, vol 4630. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75538-8\_5

Download citation

Publish with us