Reactive oxygen molecules, oxidant injury and renal disease (original) (raw)
Cross CE, Halliwell B, Borish ET, Pryor WA, Ames BN, Saul RL, McCord JM, Harmon D (1988) Oxygen radicals and human disease. Ann Intern Med 107: 526–545 Google Scholar
Halliwell B (1987) Oxidants and human disease: some new concepts. FASEB J 1: 388–364 PubMed Google Scholar
McCord JM, Fridovich I (1978) The biology and pathology of oxygen radicals. Ann Intern Med 89: 122–127 PubMed Google Scholar
Floyd RA (1990) Role of oxygen free radicals in carcinogenesis and brain ischemia. FASEB J 4: 2587–2597 PubMed Google Scholar
Fridovich I (1976) Oxygen radicals, hydrogen peroxide, and oxygen toxicity. In: Pryor WA (ed) Free radicals in biology, vol 1. Academic Press, New York pp 239–277 Google Scholar
Anonymous (1985) Metal chelation therapy, oxygen radicals, and human disease. Lancet I: 143–145
Babior BM (1984) The respiratory burst of phagocytes. J Clin Invest 73: 599–601 PubMed Google Scholar
Malech HL, Gallin JI (1987) Neutrophils in human disease. N Engl J Med 317: 687–694 PubMed Google Scholar
Weiss SJ (1989) Tissue destruction by neutrophils. N Engl J Med 320: 365–376 PubMed Google Scholar
Test ST, Lampert MB, Ossanna PJ, Thoene JG, Weiss SJ (1984) Generation of nitrogen-chlorine oxidants by human phagocytes. J Clin Invest 74: 1341–1349 PubMed Google Scholar
Baud L, Ardaillou R (1986) Reactive oxygen species: production and role in the Kidney. Am J Physiol 251: F765-F776 PubMed Google Scholar
Adler S, Baker PJ, Johnson RJ, Ochi RF, Pritzi P, Couser WG (1986) Complement membrane attack complex stimulates production of reactive oxygen metabolites by cultured rat mesangial cells. J Clin Invest 77: 762–767 PubMed Google Scholar
Baud L, Hagege J, Sraer J, Rondeau E, Perez J, Ardaillou R (1983) Reactive oxygen production by cultured rat glomerular mesangial cells during phagocytosis in associated with stimulation of lipoxygenase activity. J Exp Med 158: 1836–1852 PubMed Google Scholar
Horton JK, Davies M, Topley N, Thomas D, Williams JD (1990) Activation of the inflammatory response of neutrophils by Tamm-Horsfall glycoprotein. Kidney Int 37: 717–726 PubMed Google Scholar
Nathan CF (1987) Neutrophil activation on biological surfaces. J Clin Invest 80: 1550–1560 PubMed Google Scholar
Janco RL, English D (1983) Regulation of monocyte oxidative metabolism: chemotactic factor enhancement of superoxide release, hydroxyl radical generation, and chemiluminescence. J Lab Clin Med 102: 890–898 PubMed Google Scholar
Johnston RB, Kitagawa S (1985) Molecular basis for the enhanced respiratory burst of activated macrophages. Fed Proc 44: 2927–2932 PubMed Google Scholar
Freeman BA, Crapo JD (1982) Biology of disease: free radicals and tissue injury. Lab Invest 47: 412–426 PubMed Google Scholar
Chance B, Seis H, Booeris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59: 527–605 PubMed Google Scholar
McCord JM (1985) Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 312: 159–163 PubMed Google Scholar
McKelvey TG, Hollwarth ME, Granger DN, Engerson TD, Landler U, Jones HP (1988) Mechanisms of conversion of xanthine dehydrogenase to xanthine oxidase in ischemic rat liver and kidney. Am J Physiol 254: G753-G760 PubMed Google Scholar
Morgan TR, Laudone VP, Heston WDW, Zeitz L, Fair WR (1988) Free radical production by high energy shock waves-comparison with ionizing irradiation. J Urol 139: 186–189 PubMed Google Scholar
McCoy RN, Hill KE, Ayon MA, Stein JH, Burk RF (1988) Oxidant stress following renal ischemia: changes in the glutathione redox ratio. Kidney Int 33: 812–817 PubMed Google Scholar
Beckman JS, Minor RL, White CW, Repine JE, Rosen GM, Freeman BA (1988) Superoxide dismutase and catalase conjugated to polyethylene glycol increases endothelial enzyme activity and oxidant resistance. J Biol Chem 263: 6884–6892 PubMed Google Scholar
Andreoli SP, Mallett CH, Bergstein JM (1986) Role of glutathione in protecting endothelial cells against hydrogen peroxide oxidant injury. J Lab Clin Med 108: 190–198 PubMed Google Scholar
Hagen TM, Aw TY, Jones DP (1988) Glutathione uptake and protection against oxidative injury in isolated kidney cells. Kidney Int 34: 74–81 PubMed Google Scholar
Messana JM, Cieslinski DA, O'Connor RP, Humes HD (1988) Glutathione protects against exogenous oxidant injury to rabbit renal proximal tubules. Am J Physiol 255: F874-F884 PubMed Google Scholar
Andreoli SP, McAteer JA Antioxidant defense mechanisms of endothelial cells and renal tubular epithelial cells: role of the glutathione redox cycle and catalase. Pediatr Res 27: 323a
Broadley C, Hoover RL (1989) Ceruloplasmin reduces the adhesion and scavenges superoxide during the interaction of activated polymorphonuclear leukocytes with endothelial cells. Am J Pathol 135: 647–655 PubMed Google Scholar
Machlin LJ, Bendich A (1987) Free radical tissue damage: protective role of antioxidant nutrients. FASEB J 1: 441–445 PubMed Google Scholar
Andreoli SP, McAteer JM (1990) Reactive oxygen molecule mediated injury in vitro: differential response by endothelial cells and renal tubule epithelial cells. Kidney Int 38: 785–794 PubMed Google Scholar
Lash LH, Tokarz JJ (1990) Oxidative stress in isolated rat renal proximal and distal tubular cells. Am J Physiol 259: F338-F347 PubMed Google Scholar
Hayashibe H, Asayama K, Dobashi K, Kato K (1990) Prenatal development of antioxidant enzymes in rat lung, kidney, and heart: marked increase in immunoreactive superoxide dismutases, glutathione peroxidase, and catalase in the kidney. Pediatr Res 27: 472–475 PubMed Google Scholar
Mak IT, Weglicki WB (1988) Protection by B-blocking agents against free radical-mediated sarcolemmal lipid peroxidation. Circ Res 63:262–266 PubMed Google Scholar
Andreoli SP (1990) Captopril scavenges hydrogen peroxide and lessens oxidant induced ATP depletion in NHK-C and endothelial cells. J Am Soc Nephrol 1:606a Google Scholar
Parthasarathy S, Young SG, Witztum JL, Pittman RC, Steinberg D (1986) Probucol inhibits oxidative modification of low density lipo-protein. J Clin Invest 77: 641–644 PubMed Google Scholar
Sagone AL, Democko C, Clark L, Kartha M (1983) Determination of hydroxyl radical production in aqueous solutions irradiated to clinically significant doses. J Lab Clin Med 101: 196–204 PubMed Google Scholar
Stadtman ER (1990) Metal ion-catalyzed oxidation of proteins: biochemical mechanism and biological consequences. Free Radic Biol Med 9: 315–325 ArticlePubMed Google Scholar
Farber JL, Kyle ME, Coleman JB (1990) Mechanisms of cell injury by activated oxygen species. Lab Invest 62: 670–679 PubMed Google Scholar
Schraufstatter IU, Hyslop PA, Jackson JH, Cochrane CG (1988) Oxidant-induced DNA damage of target cells. J Clin Invest 82: 1040–1050 PubMed Google Scholar
Schraufstatter IU, Hinshaw DB, Hyslop PA, Spragg RG, Cochrane CG (1985) Glutathione cycle activity and pyridine nucleotide levels in oxidant-induced injury of cells. J Clin Invest 76: 1131–1139 PubMed Google Scholar
Spragg RG, Hinshaw DB, Hyslop PA, Schraufstatter IU, Cochrane CG (1985) Alterations in adenosine triphosphate and energy charge in cultured endothelial and P388D cells after oxidant injury. J Clin Invest 76: 1471–1476 PubMed Google Scholar
Andreoli SP (1989) Mechanisms of endothelial cell ATP depletion after oxidant injury. Pediatr Res 25: 97–101 PubMed Google Scholar
Andreoli SP, Bachner RL, Bergstein JM (1985) In vitro detection of endothelial cell damage utilizing 2-deoxy-D-3H-glucose: comparison with51chromium,3H-adenine and LDH. J Lab Clin Med 106: 253 PubMed Google Scholar
Hyslop PA, Hinshaw DB, Halsey WA Jr, Schraufstatter IU, Sauerheber RD, Spragg RG, Jackson JH, Cochrane CG (1985) Mechanisms of oxidant-mediated cell injury. J Biol Chem 263: 1665–1675 Google Scholar
Andreoli SP, Leichty EA, Mallett C (1990) Exogenous adenine nucleotides replete endothelial cell adenosine triphosphate after oxidant injury by adenosine uptake. J Lab Clin Med 115: 304–313 PubMed Google Scholar
Orrenius S, McConkey DJ, Nicotera P (1988) Mechanisms of oxidant-induced cell damage. In: Ceruti PA, Fridovich I, McCord J (eds) Oxy-radicals in molecular biology and pathology. Liss, New York, New York, pp 327–339 Google Scholar
Scott JA, Khaw BA, Homcy CJ, Rabito CA (1987) Oxygen radicals alter the cell membrane potential in a renal cell line (LLC-PK1) with differentiated characteristics of proximal tubular cells. 897: 25–32
Welsh MJ, Shasby DM, Husted RM (1985) Oxidants increase paracellular permeability in a cultured epithelial cell line. J Clin Invest 76: 1155–1168 PubMed Google Scholar
Band L, Nivez MP, Chansel D, Ardaillou R (1981) Stimulation by oxygen radicals of prostaglandin production by rat renal glomeruli. Kidney Int 20: 332–339 PubMed Google Scholar
Shah SV (1984) Effect of enzymatically generated reactive oxygen metabolites on the cyclic nucleotide content in isolated rat glomeruli. J Clin Invest 73: 393–401 Google Scholar
Fligiel SEG, Lee EC, McCoy JP, Johnson KJ, Varani J (1984) Protein degradation following treatment with hydrogen peroxide. Am J Pathol 115: 418–425 PubMed Google Scholar
Vissers MCM, Wiggins R, Fantone JC (1989) Comparative ability of human monocytes and neutrophils to degrade glomerular basement membrane in vitro. Lab Invest 60: 831–838 PubMed Google Scholar
Johnson RJ, Couser WG, Alpers CE, Vissers M, Schulze M, Klebanoff SJ (1988) The human neutrophil serine proteinases, elastase and cathepsin G, can mediate glomerular injury in vivo. J Exp Med 168: 1169–1174 ArticlePubMed Google Scholar
Shah SV, Baricos WH, Basci A (1987) Degradation of human glomerular basement membrane by stimulated neutrophils. J Clin Invest 79: 25–31 PubMed Google Scholar
Rubanyi GM (1988) Vascular effects of oxygen-derived free radicals. Free Radio Biol Med 4: 107–120 Article Google Scholar
Gryglewski RJ, Palmer RMJ, Moncada S (1986) Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature 320: 454–456 ArticlePubMed Google Scholar
Shah SV (1989) Role of reactive oxygen metabolites in experimental glomerular disease. Kidney Int 35: 1093–1106 PubMed Google Scholar
Rehan A, Johnson KJ, Kunkel RG, Wiggins RC (1985) Role of oxygen radicals in phorbol myristate acetate-induced glomerular injury. Kidney Int 27: 503–511 PubMed Google Scholar
Yoshioka T, Ichikawa I (1989) Glomerular dysfunction induced by polymorphonuclear leukocyte-derived reactive oxygen species. Am J Physiol 257: F53-F59 PubMed Google Scholar
Rehan A, Wiggins RC, Kunkel RG, Till GO, Johnson KJ (1986) Glomerular injury and proteinuria in rats after intrarenal injection of cobra venom factor. Am J Pathol 123: 57–66 PubMed Google Scholar
Johnson RJ, Couser WG, Chi EY, Adler S, Kiebanoff SJ (1987) New mechanism for glomerular injury. J Clin Invest 79: 1379–1387 PubMed Google Scholar
Johnson RJ, Guggenheim SJ, Klebanoff SJ, Ochi RF, Wass A, Baker P, Schulze M, Couser WG (1988) Morphologic correlates of glomerular oxidant injury induced by the myeloperoxidase-hydrogen peroxide-halide system of the neutrophil. Lab Invest 5: 294–301 Google Scholar
Rehan A, Johnson KJ, Wiggins RC, Kunkel RG, Ward PA (1984) Evidence for the role of oxygen radicals in acute nephrotoxic nephritis. Lab Invest 51: 396–403 PubMed Google Scholar
Tucker BJ, Gushwa LC, Wilson CB, Blantz RC (1985) Effect of leukocyte depletion on glomerular dynamics during acute glomerular immune injury. Kidney Int 28: 28–35 PubMed Google Scholar
Boyce NW, Holdsworth SR (1986) Hydroxyl radical mediation of immune renal injury by desferrioxamine. Kidney Int 30: 813–817 PubMed Google Scholar
Tomosugi NI, Cashman SJ, Hay H, Pusey CD, Evans DJ, Shaw A, Rees AJ (1989) Modulation of antibody-mediated glomerular injury in vivo by bacterial lipopolysaccharide, tumor necrosis factor, and IL-1. J Immunol 142: 3083–3090 PubMed Google Scholar
Boyce NW, Tipping PG, Holdsworth SR (1989) Glomerular macrophages produce reactive oxygen species in experimental glomerulonephritis. Kidney Int 35: 778–782 PubMed Google Scholar
Falk JR, Jennette JC (1988) Anti-neutrophil cytoplasmic autoantibodies with specificity for myeloperoxidase in patients with systemic vasculitis and idiopathic necrotizing and crescentic glomerulonephritis. N Engl J Med 318: 1651–1657 PubMed Google Scholar
Jennette JC, Wilkman AS, Falk RJ (1989) Anti-neutrophil cytoplasmic autoantibody-associated glomerulonephritis and vasculitis. Am J Pathol 135: 921–930 PubMed Google Scholar
Falk RJ, Terrell RS, Charles LA, Jennette JC (1990) Anti-neutrophil cytoplasmic autoantibodies induce neutrophils to degranulate and produce oxygen radicals in vitro. Proc Natl Acad Sci USA 87: 4115–4119 PubMed Google Scholar
Shah SV (1988) Evidence suggesting a role for hydroxyl radical in passive Heymann nephritis in rats. Am J Physiol 254: F337-F344 PubMed Google Scholar
Rahman MA, Emancipator SS, Sedor JR (1988) Hydroxyl radical scavengers ameliorate proteinuria in rat immune complex glomerulonephritis. J Lab Clin Med 112: 619–626 PubMed Google Scholar
Paller MS, Hoidal JR, Ferris TF (1984) Oxygen free radicals in ischemic acute renal failure in the rat. J Clin Invest 74: 1156–1164 PubMed Google Scholar
Paller MS, Hedlund BE (1988) Role of iron in postischemic renal injury in the rat. Kidney Int 34: 474–480 PubMed Google Scholar
Linas SL, Whittenburg D, Repine JE (1990) role of xanthine oxidase in ischemia/reperfusion injury. Am J Physiol 258: F711-F716 PubMed Google Scholar
Nath KA, Paller MS (1990) Dietary deficiency of antioxidants exacerbates ischemic injury in the rat kidney. Kidney Int 38: 1109–1117 PubMed Google Scholar
Linas SL, Shanley PF, Whittenburg D, Berger E, Repine JE (1988) Neutrophils accentuate ischemic-reperfusion injury in isolated perfused rat kidneys. Am J Physiol 255: F728-F735 PubMed Google Scholar
Hellberg POA, Kallskog TOK (1989) Neutrophil-mediated postischemic tubular leakage in the rat kidney. Kidney Int 36: 555–561 PubMed Google Scholar
Koyama I, Bulkley GB, Williams GM, Im MJ (1985) The role of oxygen free radicals in mediating the reperfusion injury of cold-preserved ischemic kidneys. Transplantation 40: 590–595 PubMed Google Scholar
Bry WI, Collins GM, Halasz NA, Jellinek M (1984) Improved function of perfused rabbit kidneys by prevention of oxidative injury. Transplantation 38: 579–582 PubMed Google Scholar
Gamelin LM, Zager RA (1988) Evidence against oxidant injury as a critical mediator of postischemic acute renal failure. Am J Physiol 255: F450-F460 PubMed Google Scholar
Joannidis M, Gstraunthaler G, Pfaller W (1990) Xanthine oxidase: evidence against a causative role in renal reperfusion injury. Am J Physiol 258: F232-F236 PubMed Google Scholar
Borkan SC, Schwartz JH (1989) Role of oxygen free radical species in in vitro models of proximal tubular ischemia. Am J Physiol 257: F114-F125 PubMed Google Scholar
Doctor RB, Mandel LJ (1991) Minimal role of xanthine oxidase and oxygen free radicals in rat renal tubular reoxygenation injury. J Am Soc Nephrol 1: 959–969 PubMed Google Scholar
Thornton MA, Winn R, Alpers CE, Zager RA (1989) An evaluation of the neutrophil as a mediator of in vivo renal ischemic-reperfusion injury. Am J Pathol 135: 509–515 PubMed Google Scholar
Paller MS (1989) Effect of neutrophil depletion on ischemic renal injury in the rat. J Lab Clin Med 113: 379–386 PubMed Google Scholar
Linas SL, Whittenburg D, Repine JE (1987) O2 metabolites cause reperfusion injury after short but not prolonged renal ischemia. Am J Physiol 253: F685-F691 PubMed Google Scholar
Diamond JR, Bonventre JV, Karnovsky MJ (1986) A role for oxygen free radicals in aminonucleoside nephrosis. Kidney Int 29: 478–483 PubMed Google Scholar
Thakur V, Walker PD, Shah SV (1988) Evidence suggesting a role for hydroxyl radical in puromycin aminonucleoside-induced proteinuria. Kidney Int 34: 494–499 PubMed Google Scholar
Beaman M, Birtwistle R, Howie AJ, Michael J, Adu D (1987) The role of superoxide anion and hydrogen peroxide in glomerular injury induced by puromycin aminonucleoside in rats. Clin Sci 73: 329–332 PubMed Google Scholar
Doroshow JH, Locker GY, Ifrim I, Myers CE (1981) Prevention of doxorubicin cardiac toxicity in the mouse by_N_-acetylcysteine. J Clin Invest 68: 1053–1064 PubMed Google Scholar
Myers CE, McGuire WP, Liss RH, Iprim I, Grotzinger K, Young RC (1977) Adriamycin: the role of lipid peroxidation in cardiac toxixity and tumor response. Science 197: 165–167 PubMed Google Scholar
Thayer WS (1988) Evaluation of tissue indicators of oxidation stress in rats treated chronically with Adriamycin. Biochem Pharmacol 37: 2189–2194 ArticlePubMed Google Scholar
Ohishi A, Suzuki H, Nakamoto H, Katsumata H, Sakaguchi H, Saruta T (1989) Differences in the effects of angiotensin converting enzyme inhibitors with or without a thiol group in chronic renal failure in rats. Clin Sci 76: 353–356 PubMed Google Scholar
Shah SV, Walker PD (1988) Evidence suggesting a role for hydroxyl radical in glycerol-induced acute renal failure. Am J Physiol 255: F438-F443 PubMed Google Scholar
Paller MS (1988) Hemoglobin- and myoglobin-induced acute renal failure in rats: role of iron in nephrotoxicity. Am J Physiol 255: F539-F544 PubMed Google Scholar
Walker PD, Shah SV (1987) Gentamicin enhanced production of hydrogen peroxide by renal cortical mitochondria. Am J Physiol 253: C495-C499 PubMed Google Scholar
Walker PD, Shah SV (1988) Evidence suggesting a role for hydroxyl radical in gentamicin-induced acute renal failure in rats. J Clin Invest 81: 334–341 PubMed Google Scholar
Bakris GL, Lass N, Gaber AO, Jones JD, Burnett JC Jr (1990) Radiocontrast medium-induced declines in renal function: a role for oxygen free radicals. Am J Physiol 258: F115-F120 PubMed Google Scholar
Hanneman J, Baumann K (1988) Cisplatin-induced lipid peroxidation and decrease of gluconeogenesis in rat kidney cortex: different effects of antioxidants and radical scavengers. Toxicology 51: 119–132 ArticlePubMed Google Scholar
O'Regan S, Fong JSC (1978) Lipid peroxidation in the hemolytic uremic syndrome. Medical Hypothesis 4: 353–361 Article Google Scholar
O'Regan S, Chesney RW, Kaplan BS, Drummond KN (1980) Red cell membrane phospholipid abnormalities in the hemolytic uremic syndrome. Clin Nephrol 15: 14–17 Google Scholar
Milford D, Taylor CM, Rafaat F, Halloran E, Dawes J (1989) Neutrophil elastases and haemolytic uraemic syndrome. Lancet II: 1153 Article Google Scholar
Forsyth KD, Simpson AC, Fitzpatrick MM, Barratt TM, Levinsky RJ (1989) Neutrophil-mediated endothelial injury in haemolytic ureamic syndrome. Lancet II: 411–414 Article Google Scholar
Vedanarayanan VV, Kaplan BS, Fong JSC (1987) Neutrophil function in an experimental model of hemolytic uremic syndrome. Pediatr Res 21: 252–256 PubMed Google Scholar
Walters MDS, Matthei IU, Kay R, Dillon MJ, Barratt TM (1989) The polymorphonuclear leucocyte count in childhood haemolytic uraemic syndrome. Pediatr Nephrol 3: 130–134 PubMed Google Scholar
Karmali MA, Petric M, Lim C, Fleming PC, Arbus GS, Lior H (1985) The association between idiopathic hemolytic uremic syndrome and infection by verotoxin-producing_Escherichia coli_. J Infect Dis 151: 775–782 PubMed Google Scholar
Milford DV, Taylor CM (1990) New insights into the haemolytic uraemic syndromes. Arch Dis Child 65: 713–715 PubMed Google Scholar
Cotran RS, Pober JS (1990) Cytokine-endothelial interactions in inflammation, immunity, and vascular injury. J Am Soc Nephrol 1: 225–235 PubMed Google Scholar
Moore KL, Andreoli SP, Esmon NL, Esmon CT, Bang NU (1987) Endotoxin enhances tissue factor and suppresses thrombomodulin expression of human vascular endothelium in vitro. J Clin Invest 79: 124–130 PubMed Google Scholar
Harris DC, Chan H, Schrier RW (1988) Remnant kidney hypermetabolism and progression of chronic renal failure. Am J Physiol: F267–F276
Schrier RW, Harris DCH, Chan L, Shapiro JI, Caramelo C (1988) Tubular hypermetabolism as a factor in the progression of chronic renal failure. Am J Kidney Dis 12: 243–249 PubMed Google Scholar
Nath KA, Croatt AJ, Hostetter TH (1990) Oxygen consumption and oxidant stress in surviving nephrons. Am J Physiol 258: F1354-F1362 PubMed Google Scholar
Nath KA, Salahudeen AK (1990) Induction of renal growth and injury in the intact rat kidney by dietary deficiency of antioxidants. J Clin Invest 86: 1179–1192 PubMed Google Scholar
Glauser MP, Neylan P, Bille J (1987) The inflammatory response and tissue damage. Pediatr Nephrol 1: 615–622 PubMed Google Scholar
Glauser MP, Lyons JM, Braude AI (1978) Prevention of chronic experimental pyelonephritis by suppression of acute suppuration. J Clin Invest 61: 403–407 PubMed Google Scholar
Bille J, Glauser MP (1982) Protection against chronic pyelonephritis in rats by suppression of acute suppuration: effect of colchicine and neutropenia. J Infect Dis 146: 220–226 PubMed Google Scholar
Topley N, Steadman R, Mackenzie R, Knowlden JM, Williams JD (1989) Type I fimbriate strains of_Escherichia coli_ initiate renal parenchymal scarring. Kidney Int 36: 609–616 PubMed Google Scholar
Bergstein J, Andreoli SP, Provisor AJ, Yum M (1986) Radiation nephritis following total-body irradiation and cyclophosphamide in preparation for bone marrow transplantation. Transplantation 41: 63–66 PubMed Google Scholar
Antignac C, Gubler MC, Leverger G, Broyer M, Habib R, Lacoste M, Beziau A, Naizot C (1989) Delayed renal failure with extensive mesangiolysis following bone marrow transplantation. Kidney Int 35: 1336–1344 PubMed Google Scholar
Loomis LJ, Aaronson AJ, Rudinsky R, Spargo BH (1989) Hemolytic uremic syndrome following bone marrow transplantation: a case report and review of the literature. Am J Kidney Dis 14: 324–328 PubMed Google Scholar
Dunn MM, Drab EA, Rubin DB (1986) Effects of irradiation on endothelial cell-polymorphonuclear leukocyte interactions. J Appl Physiol 60: 1932–1937 PubMed Google Scholar
Williams CM, Kaude JV, Newman RC, Peterson JC, Thomas WC (1988) Extracorporeal shock-wave lithotripsy: long-term complications. AJR 150: 311–315 PubMed Google Scholar
Lingeman JE, Woods JR, Toth PD (1990) Blood pressure changes following extracorporeal shock wave lithotripsy and other forms of treatment for nephrolithiasis. JAMA 263: 1789–1794 PubMed Google Scholar
Harris KPG, Schreiner GF, Klahr S (1989) Effect of leukocyte depletion on the function of the postobstructed kidney in the rat. Kidney Int 36: 210–215 PubMed Google Scholar
Modi KS, Morrissey J, Shah SV, Schreiner GF, Klahr S (1990) Effects of probucol on renal function in rats with bilateral ureteral obstruction. Kidney Int 38: 843–850 PubMed Google Scholar
Halliwell B (1989) Free radicals, reactive oxygen species and human disease: a critical evaluation with special reference to atherosclerosis. Br J Exp Pathol 70: 737–757 PubMed Google Scholar
Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witzum JL (1989) Beyond cholesterol. Modification of low-density lipoprotein that increases its atherogenicity. N Engl J Med 320: 915–924 PubMed Google Scholar
Gutteridge JMC, Quinlan GJ, Clark I, Halliwell B (1985) Aluminum salts accelerate peroxidation of membrane lipids stimulated by iron salts. Biochim Biophys Acta 835: 441–447 PubMed Google Scholar