Axioms for Euclidean Green's functions II (original) (raw)

Access this article

Log in via an institution

Subscribe and save

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Constantinescu, F., Thalheimer, W.: Euclidean Green's functions for Jaffe fields. Commun. math. Phys.38, 299–316 (1974)
    Google Scholar
  2. Epstein, H.: Some analytic properties of scattering amplitudes in quantum field theory. In: Chretien, M., Deser, S. (Eds.): Brandeis lectures 1965, Vol. I. New York: Gordon and Breach 1966
    Google Scholar
  3. Fröhlich, J.: Schwinger functions and their generating functionals. Helv. Phys. Acta47, 265 (1974)
    Google Scholar
  4. Gelfand, I.M., Shilov, G.E.: Generalized functions, Vol. II, p. 227. New York and London: Academic Press 1968
    Google Scholar
  5. Glaser, V.: The positivity condition in momentum space. In: Problems of theoretical physics. Moscow: Nauka 1969
    Google Scholar
  6. Glaser, V.: On the equivalence of the Euclidean and Wightman formulations of field theory. Commun. Math. Phys.37, 257 (1974)
    Google Scholar
  7. Glimm, J., Jaffe, A.: A remark on the existence of ϕ 44 . Phys. Rev. Lett.33, 440–441 (1974)
    Google Scholar
  8. Glimm, J., Jaffe, A., Spencer, T.: The Wightman axioms and particle structure in the_P_(ϕ)2 quantum field model. Ann. Math.100, 585 (1974)
    Google Scholar
  9. Hörmander, L.: On the division of distributions by polynomials. Arkiv Mat.3, 555 (1958)
    Google Scholar
  10. Mandelbrojt, S.: Séries adhérentes, régularisation des suites, applications. Paris: Gauthier-Villars 1952
    Google Scholar
  11. Nelson, E.: Construction of quantum fields from Markoff fields. J. Funct. Anal.12, 97 (1973)
    Google Scholar
  12. Osterwalder, K., Schrader, R.: Axioms for Euclidean Green's functions. Commun. math. Phys.31, 83 (1973)
    Google Scholar
  13. Osterwalder, K.: Euclidean Green's functions and Wightman distributions. In: Velo, G., Wightman, A.S. (Eds.): Constructive quantum field theory, Lecture notes in physics. Berlin-Heidelberg-New York: Springer 1973
    Google Scholar
  14. Schwartz, L.: Théorie des distributions, p. 260. Paris: Hermann 1966
    Google Scholar
  15. Simon, B.: Positivity of the Hamiltonian semigroup and the construction of Euclidean region fields. Helv. Phys. Acta46, 686 (1973)
    Google Scholar
  16. Simon, B.: Private communication
  17. Simon, B.: Distributions and their hermite expansions. J. Math. Phys.12, 140 (1971)
    Google Scholar
  18. Stein,M., Weiss,G.: Fourier analysis on Euclidean spaces, p. 38. Princeton University Press 1971
  19. Velo, G., Wightman, A.S. (Eds.): Constructive quantum field theory, Lecture notes in physics. Berlin-Heidelberg-New York: Springer 1973
    Google Scholar
  20. Vladimirov, V.S.: Methods of the theory of functions of several complex variables. Cambridge and London: MIT Press 1966
    Google Scholar
  21. Whitney, H.: Analytic extensions of differentiable functions defined in closed sets. Trans. Amer. Math. Soc.36, 63 (1934)
    Google Scholar

Download references