Axioms for Euclidean Green's functions (original) (raw)

References

  1. Borchers, H. J.: On structure of the algebra of field operators. Nuovo Cimento24, 214 (1962).
    Google Scholar
  2. Dimock, J., Glimm, J.: Measures on the Schwartz distribution space and applications to quantum field theory (to appear).
  3. Dyson, F. J.: The_S_ matrix in quantum electrodynamics. Phys. Rev.75, 1736 (1949).
    Google Scholar
  4. Feldman, J.: A relativistic Feynman-Kac formula. Harvard preprint (1972).
  5. Gelfand, I. M., Shilov, G. E.: Generalized functions, Vol. 2. New York: Academic Press 1964.
    Google Scholar
  6. Glimm, J., Jaffe, A.: Quantum field theory models, in the 1970 Les Houches lectures. Dewitt, C., Stora, R. (Ed.). New York: Gordon and Breach Science Publishers 1971.
    Google Scholar
  7. Glimm, J., Jaffe, A.: Positivity of the ϕ 43 Hamiltonian, preprint 1972.
  8. Glimm, J., Jaffe, A.: The λϕ 42 quantum field theory without cutoffs IV. J. Math. Phys.13, 1568 (1972).
    Google Scholar
  9. Glimm, J., Spencer, T.: The Wightman axioms and the mass gap for theP (ϕ)2 quantum field theory, preprint (1972).
  10. Hall, D., Wightman, A. S.: A theorem on invariant analytic functions with applications to relativistic quantum field theory. Mat.-Fys. Medd. Danske Vid. Selsk.31, No. 5 (1951).
    Google Scholar
  11. Hörmander, L.: On the division of distributions by polynomials. Arkiv Mat.3, 555 (1958).
    Google Scholar
  12. Jost, R.: The general theory of quantized fields. Amer. Math. Soc. Publ., Providence R. I., 1965.
  13. Jost, R.: Eine Bemerkung zum CTP-Theorem. Helv. Phys. Acta30, 409 (1957).
    Google Scholar
  14. Jost, R.: Das Pauli-Prinzip und die Lorentz-Gruppe. In: Theoretical physics in the twentieth century, ed. Fierz, M., Weisskopf, V. New York: Interscience Publ. 1960.
    Google Scholar
  15. Nelson, E.: Quantum fields and Markoff fields. Amer. Math. Soc. Summer Institute on PDE, held at Berkeley, 1971.
  16. Nelson, E.: Construction of quantum fields from Markoff fields, preprint (1972).
  17. Nelson, E.: The free Markoff field, preprint (1972).
  18. Osterwalder, K., Schrader, R.: Euclidean Fermi fields and a Feynman-Kac formula for Boson-Fermion models, Helv. Phys. Acta, to appear, and Phys. Rev. Lett.29, 1423 (1972).
    Google Scholar
  19. Robertson, A. P., Robertson, W. J.: Topological vector spaces. London and New York: Cambridge Univ. Press 1964.
    Google Scholar
  20. Ruelle, D.: Connection between Wightman functions and Green functions in_P_-space. Nuovo Cimento19, 356 (1961).
    Google Scholar
  21. Schwinger, J.: On the Euclidean structure of relativistic field theory. Proc. Natl. Acad. Sci. U.S.44, 956 (1958).
    Google Scholar
  22. Schwinger, J.: Euclidean quantum electrodynamics. Phys. Rev.115, 721 (1959).
    Google Scholar
  23. Streater, R. F., Wightman, A. S.: PCT, spin and statistics and all that. New York: Benjamin 1964.
    Google Scholar
  24. Symanzik, K.: Euclidean quantum field theory. I. Equations for a scalar model. J. Math. Phys.7, 510 (1966).
    Google Scholar
  25. Symanzik, K.: Euclidean quantum field theory. In: Proceedings of the International School of Physics “ENRICO FERMI”, Varenna Course XLV, ed. Jost, R. New York: Academic Press 1969.
    Google Scholar
  26. Vladimirov, V. S.: Methods of the theory of functions of several complex variables. Cambridge and London: MIT Press 1966.
    Google Scholar
  27. Whitney, H.: Analytic extensions of differentiable functions defined in closed sets. Trans. Amer. Math. Soc.36, 63 (1934).
    Google Scholar
  28. Wightman, A. S.: Quantum field theory and analytic functions of several complex variables. J. Indian Math. Soc.24, 625 (1960).
    Google Scholar

Download references