Randomized incremental construction of Delaunay and Voronoi diagrams (original) (raw)
References
A. Aggarwal, H. Imai, N. Katoh, and S. Suri, Finding_k_ points with minimum diameter and related problems,Proc. 5th ACM Symp. on Computational Geometry, 1989, pp. 283–291.
G. Andrews,The Theory of Partitions, Addison-Wesley, Reading, MA, 1976. (Encyclopedia of Mathematics and Its Applications, Volume 2.) MATH Google Scholar
I. Bárány, J. Schmerl, S. Sidney, and J. Urrutia, A combinatorial result about points and balls in Euclidean space,Discrete Comput. Geom.,3 (1988), 259–262. Google Scholar
J. Bentley, B. Weide, and A. Yao, Optimal expected time algorithms for closest point problems,ACM Trans. Math. Software,6 (1980), 563–580. ArticleMATHMathSciNet Google Scholar
J.-D. Boissonnat, and M. Teillaud, A hierarchical representation of objects: the Delaunay tree,Proc. 2nd ACM Symp. on Computational Geometry, 1986, pp. 260–268.
B. Chazelle, H. Edelsbrunner, L. Guibas, R. Seidel, and M. Sharir, Selecting multiply covered points and reducing the size of Delaunay triangulations, Manuscript, 1989.
P. Chew, The simplest Voronoi diagram algorithm takes linear expected time, Manuscript, 1988.
K. Clarkson, Personal communication, 1989.
K. Clarkson and P. Shor, Applications of random sampling in computational geometry, II,Discrete Comput. Geom.,4 (1989), 387–421. ArticleMATHMathSciNet Google Scholar
B. Delaunay, Neue Darstellung der geometrischen Krystallographie,Z. Kryst.,84 (1932), 109–149. MATH Google Scholar
B. Delaunay, Sur la sphère vide,Izv. Akad. Nauk SSSR. Otdel. Mat. Estestv. Nauk,7 (1934), 793–800. Google Scholar
R. Dwyer, Higher dimensional Voronoi diagrams in linear expected time,Proc. 5th ACM Symp. on Computational Geometry, 1989, pp. 326–333.
H. Edelsbrunner,Algorithms in Combinatorial Geometry, Springer-Verlag, Heidelberg, 1987. MATH Google Scholar
H. Edelsbrunner, L. Guibas, and J. Stolfi, Optimal point location in a monotone subdivision,SIAM J. Comput.,15 (1986), 317–340. ArticleMATHMathSciNet Google Scholar
H. Edelsbrunner, N. Hasan, R. Seidel, and X. Shen, Circles through two points that always enclose many points, Technical Report UIUCDCS-R-88-1400, University of Illinois at Urbana, January 1988.
S. Fortune, A note on Delaunay diagonal flips, Unpublished manuscript.
P. Green and R. Sibson, Computing Dirichlet tesselation in the plane,Comput. J.,21 (1977), 168–173. MathSciNet Google Scholar
L. Guibas and M. Sharir, History helps queries, In preparation.
L. Guibas and J. Stolfi, Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams,ACM Trans. Graphics,4 (1985), 74–123. ArticleMATH Google Scholar
J. Jaromczyk and G. Swiatek, Degenerate cases do not require more memory, Manuscript, 1989.
D. E. Knuth,The Art of Computer Programming, Vol. 3, Addison-Wesley, Reading, MA, 1973. Google Scholar
K. Mehlhorn, S. Meiser, and C. Ó'Dúnlaing, On the construction of abstract Voronoi diagrams, Manuscript, 1989.
K. Mulmuley, A fast planar partition algorithm, Technical Report 88-107, Department of Computer Science, University of Chicago, May 1988.
F. Preparata and M. Shamos,Computational Geometry-An Introduction, Springer-Verlag, Berlin, 1985. Google Scholar
F. Preparata and R. Tamassia, Fully dynamic techniques for point location and transitive closure in planar structures,Proc. 29th IEEE Symp. on Foundations of Computer Science, 1988, pp. 558–567.
R. Seidel, Private communication.
G. Voronoi, Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier Mémoire: Sur quelques proprieteés des formes quadratiques positives parfaites,J. Reine Angew. Math.,133 (1907), 97–178. Google Scholar
G. Voronoi, Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième Mémoire: Recherches sur les parallélloèdres primitifs,J. Reine Angew. Math.,134 (1908), 198–287;136 (1909), 67–181. Google Scholar