An opportunistic global path planner (original) (raw)

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper we describe a robot path-planning algorithm that constructs a global skeleton of free-space by incremental local methods. The curves of the skeleton are the loci of maxima of an artificial potential field that is directly proportional to distance of the robot from obstacles. Our method has the advantage of fast convergence of local methods in uncluttered environments, but it also has a deterministic and efficient method of escaping local extremal points of the potential function. We first describe a general roadmap algorithm, for configuration spaces of any dimension, and then describe specific applications of the algorithm for robots with two and three degrees of freedom.

Access this article

Log in via an institution

Subscribe and save

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots.IJRR,5(1): 90–98, 1986.
    MathSciNet Google Scholar
  2. J. F. Canny.The Complexity of Robot Motion Planning. MIT Press, Cambridge, MA, 1988.
    Google Scholar
  3. T. Lozano-Pérez and M. Wesley. An algorithm for planning collision-free paths among polyhedral obstacles.Comm. ACM,22(10): 560–570, 1979.
    Article Google Scholar
  4. J. Reif.Complexity of the Mover's Problem and Generalizations, Chap. 11, pp. 267–281. Ablex Publishing, Norwood, NJ, 1987.
    Google Scholar
  5. J. T. Schwartz and M. Sharir.On the ‘Piano Movers’ Problem, II. General Techniques for Computing Topological Properties of Real Algebraic Manifolds, Chap. 5, pp. 154–186. Ablex Publishing, Norwood, NJ, 1987.
    Google Scholar
  6. B. Langlois, J. Barraquand, and J.-C. Latombe. Robot motion planning with many degrees of freedom and dynamic constraints. In_Proceedings 5th ISRR_, Tokyo, Japan, 1989, pp. 74–83.
  7. J. Canny. Computing roadmaps of general semi-algebraic sets. In_AAECC-91_, pp. 94–107,1991.
  8. J. F. Canny. Generalized characteristic polynomials.J. Symbolic Computation,9(3), 1990.
  9. D. Manocha and J. F. Canny. Efficient techniques for multipolynomial resultant algorithms.Proceedings of ISSAC '91, Bonn, Germany, 1991.
  10. J. F. Canny and A. Rege. An efficient algorithm for computing perturbed polynomial systems. University of California, Berkeley, 1992. In preparation.
    Google Scholar
  11. M. C. Lin and J. F. Canny. A fast algorithm for incremental distance calculation.IEEE ICRA '91 Proceedings,2: 1008–1014, 1991.
    Google Scholar
  12. C. G. Gibson, K. Wirthmuller, A. A. du Plessis, E. J. N. Looijenga.Topological Stability of Smooth Mappings. Springer-Verlag, Berlin, 1976.
    Book MATH Google Scholar
  13. J. F. Canny. Constructing roadmaps of semi-algebraic sets, I: Completeness.Artificial Intelligence,37: 203–222, 1988.
    Article MATH MathSciNet Google Scholar
  14. J. Milnor. On the Betti numbers of real varieties.Proc. Amer. Math. Soc.,15: 275–280, 1964.
    Article MATH MathSciNet Google Scholar
  15. R. Thom. Sur l'homologie des varietes algebriques reelles.Differential and Combinatorial Topology, pp. 255–265, 1965.

Download references

Author information

Authors and Affiliations

  1. Department of Computer Science, University of California, 543 Evans Hall, 94720, Berkeley, CA, USA
    John F. Canny
  2. Department of Electrical Engineering and Computer Science, University of California, 211 Cory Hall, Box #79, 94720, Berkeley, CA, USA
    Ming C. Lin

Authors

  1. John F. Canny
    You can also search for this author inPubMed Google Scholar
  2. Ming C. Lin
    You can also search for this author inPubMed Google Scholar

Additional information

Communicated by Bruce Randall Donald.

This research was supported by a David and Lucile Packard Foundation Fellowship and by NSF Presidential Young Investigator Grant number IRI-8958577.

Rights and permissions

About this article

Cite this article

Canny, J.F., Lin, M.C. An opportunistic global path planner.Algorithmica 10, 102–120 (1993). https://doi.org/10.1007/BF01891836

Download citation

Key words