Equivariant completions of homogenous algebraic varieties by homogenous divisors (original) (raw)

Abstract

Complete smooth complex algebraic varieties with an almost transitive action of a linear algebraic group are studied. They are classified in the case, when the complement of the open orbit is a homogeneous hypersurface. If the group and the isotropy subgroup at a generic point are both reductive, then there exists a natural one-to-one correspondence between these two-orbit varieties and compact riemannian symmetric spaces of rank one.

Access this article

Log in via an institution

Subscribe and save

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. AHIEZER, D.N.: Algebraic groups acting transitively in the complement of a homogeneous hypersurface. Dokl.Akad.Nauk SSSR 245:2 281 - 284 (1979) (Russ.).Engl. Trans.: Soviet Math. Dokl. 20, 278 – 281 (1979)
    MATH MathSciNet Google Scholar
  2. AHIEZER, D.N.: Dense orbits with two ends. Izv. Akad. Nauk SSSR, ser. mat., 41:2, 308 - 324 (1977) (Russ.). Engl. Trans.:Math. USSR, Izvestija 11, 293 – 307 (1977)
    MATH MathSciNet Google Scholar
  3. BIALYNICKI-BIRULA, A.: On homogeneous affine spaces of linear algebraic groups. Amer. J. Math. 85:4, 577 - 582 (1963)
    MATH MathSciNet Google Scholar
  4. BOREL, A.: Les bouts des espaces homogènes de groupes de Lie. Ann. of Math. 58:3, 443 - 457 (1953)
    MATH MathSciNet Google Scholar
  5. BOREL, A.: Linear algebraic groups., New York - Amsterdam: W. A. Benjamin 1969
    Google Scholar
  6. BOREL, A., TITS, J.; Eléments unipotents et sous-groupes paraboliques de groupes réductifs. Inv. Math. 12:2, 95 - 104 (1971)
    Article MathSciNet Google Scholar
  7. BOTT, R.: Homogeneous vector bundles. Ann. of Math. 66:2, 203 - 248 (1957)
    MATH MathSciNet Google Scholar
  8. BOURBAKI, N.: Groupes et algèbres de Lie, 2-ième partie. Paris: Hermann 1968
    Google Scholar
  9. BREDON, G.E.: Introduction to compact transformation groups. New York London: Academic Press 1972
    Google Scholar
  10. HUCKLEBERRY, A.T. , OEL JEKLAUS , E .: Homogeneous spaces from a complex analytic viewpoint (to appear)
  11. HUCKLEBERRY, A.T. , SNOW, D.: Almost homogeneous Kähler manifolds with hyper surface orbits (to appear)
  12. KARPELEVIČ, F.I.: On a fibering of homogeneous spaces. Uspehl Mat. Nauk 11:3, 131 - 138 (1956) (Russ.),
    Google Scholar
  13. MONTGOMERY, D., YANG, C.T.: The existence of a slice. Ann. of Math. 65:1, 108 - 116 (1957)
    MathSciNet Google Scholar
  14. MOSTOW, G.D.: On covariant fiberings of Klein spaces I, II. Amer.J.Math. 77:2, 247 - 278 (1955); 84:3, 466 – 474 (1962)
    MATH MathSciNet Google Scholar
  15. OELJEKLAUS, E.: Ein Hebbarkeitssatz für Automorphismengruppen kompakter komplexer Mannigfaltigkeiten. Math.Ann. 190:2, 154–166 (1970)
    Article MATH MathSciNet Google Scholar
  16. POTTERS, J.: On almost homogeneous compact complex analytic surfaces. Inv.Math. 8:3, 244 - 266 (1969)
    Article MATH MathSciNet Google Scholar
  17. SHAFAREVICH, I.R.: Basic algebraic geometry. Moscow: Nauka 1972 (Russ.) Engl.Translation- New York - Heidelberg - Berlin: Springer-Verlag (Grundlehren 213) 1974
    Google Scholar
  18. WANG, H. -C.: Two-point homogeneous spaces. Ann. of Math. 55:1, 177 - 191 (1952)
    MATH MathSciNet Google Scholar
  19. WEISFEILER, B. Yu.: On a certain class of unipotent subgroups of semisimple algebraic groups. Uspehi Mat. Nauk. 21:2, 222–223 (1966) (Russ.)
    MathSciNet Google Scholar
  20. WOLF, J.A.: Space of constant curvature. New York: Mc Graw-Hill 1967
    Google Scholar

Download references

Author information

Authors and Affiliations

  1. USSR, B.Spasskaja ul. 33 kv. 33, 129010, Moscow
    Dmitry Ahiezer

Authors

  1. Dmitry Ahiezer
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Ahiezer, D. Equivariant completions of homogenous algebraic varieties by homogenous divisors.Ann Glob Anal Geom 1, 49–78 (1983). https://doi.org/10.1007/BF02329739

Download citation

Keywords