Equivariant completions of homogenous algebraic varieties by homogenous divisors (original) (raw)
- 420 Accesses
- 48 Citations
- 3 Altmetric
- Explore all metrics
Abstract
Complete smooth complex algebraic varieties with an almost transitive action of a linear algebraic group are studied. They are classified in the case, when the complement of the open orbit is a homogeneous hypersurface. If the group and the isotropy subgroup at a generic point are both reductive, then there exists a natural one-to-one correspondence between these two-orbit varieties and compact riemannian symmetric spaces of rank one.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime Subscribe now
Buy Now
Price excludes VAT (USA)
Tax calculation will be finalised during checkout.
Instant access to the full article PDF.
Similar content being viewed by others
References
- AHIEZER, D.N.: Algebraic groups acting transitively in the complement of a homogeneous hypersurface. Dokl.Akad.Nauk SSSR 245:2 281 - 284 (1979) (Russ.).Engl. Trans.: Soviet Math. Dokl. 20, 278 – 281 (1979)
MATH MathSciNet Google Scholar - AHIEZER, D.N.: Dense orbits with two ends. Izv. Akad. Nauk SSSR, ser. mat., 41:2, 308 - 324 (1977) (Russ.). Engl. Trans.:Math. USSR, Izvestija 11, 293 – 307 (1977)
MATH MathSciNet Google Scholar - BIALYNICKI-BIRULA, A.: On homogeneous affine spaces of linear algebraic groups. Amer. J. Math. 85:4, 577 - 582 (1963)
MATH MathSciNet Google Scholar - BOREL, A.: Les bouts des espaces homogènes de groupes de Lie. Ann. of Math. 58:3, 443 - 457 (1953)
MATH MathSciNet Google Scholar - BOREL, A.: Linear algebraic groups., New York - Amsterdam: W. A. Benjamin 1969
Google Scholar - BOREL, A., TITS, J.; Eléments unipotents et sous-groupes paraboliques de groupes réductifs. Inv. Math. 12:2, 95 - 104 (1971)
Article MathSciNet Google Scholar - BOTT, R.: Homogeneous vector bundles. Ann. of Math. 66:2, 203 - 248 (1957)
MATH MathSciNet Google Scholar - BOURBAKI, N.: Groupes et algèbres de Lie, 2-ième partie. Paris: Hermann 1968
Google Scholar - BREDON, G.E.: Introduction to compact transformation groups. New York London: Academic Press 1972
Google Scholar - HUCKLEBERRY, A.T. , OEL JEKLAUS , E .: Homogeneous spaces from a complex analytic viewpoint (to appear)
- HUCKLEBERRY, A.T. , SNOW, D.: Almost homogeneous Kähler manifolds with hyper surface orbits (to appear)
- KARPELEVIČ, F.I.: On a fibering of homogeneous spaces. Uspehl Mat. Nauk 11:3, 131 - 138 (1956) (Russ.),
Google Scholar - MONTGOMERY, D., YANG, C.T.: The existence of a slice. Ann. of Math. 65:1, 108 - 116 (1957)
MathSciNet Google Scholar - MOSTOW, G.D.: On covariant fiberings of Klein spaces I, II. Amer.J.Math. 77:2, 247 - 278 (1955); 84:3, 466 – 474 (1962)
MATH MathSciNet Google Scholar - OELJEKLAUS, E.: Ein Hebbarkeitssatz für Automorphismengruppen kompakter komplexer Mannigfaltigkeiten. Math.Ann. 190:2, 154–166 (1970)
Article MATH MathSciNet Google Scholar - POTTERS, J.: On almost homogeneous compact complex analytic surfaces. Inv.Math. 8:3, 244 - 266 (1969)
Article MATH MathSciNet Google Scholar - SHAFAREVICH, I.R.: Basic algebraic geometry. Moscow: Nauka 1972 (Russ.) Engl.Translation- New York - Heidelberg - Berlin: Springer-Verlag (Grundlehren 213) 1974
Google Scholar - WANG, H. -C.: Two-point homogeneous spaces. Ann. of Math. 55:1, 177 - 191 (1952)
MATH MathSciNet Google Scholar - WEISFEILER, B. Yu.: On a certain class of unipotent subgroups of semisimple algebraic groups. Uspehi Mat. Nauk. 21:2, 222–223 (1966) (Russ.)
MathSciNet Google Scholar - WOLF, J.A.: Space of constant curvature. New York: Mc Graw-Hill 1967
Google Scholar
Author information
Authors and Affiliations
- USSR, B.Spasskaja ul. 33 kv. 33, 129010, Moscow
Dmitry Ahiezer
Authors
- Dmitry Ahiezer
You can also search for this author inPubMed Google Scholar
Rights and permissions
About this article
Cite this article
Ahiezer, D. Equivariant completions of homogenous algebraic varieties by homogenous divisors.Ann Glob Anal Geom 1, 49–78 (1983). https://doi.org/10.1007/BF02329739
- Received: 07 September 1981
- Issue Date: February 1983
- DOI: https://doi.org/10.1007/BF02329739