Bounds on the number of Eulerian orientations (original) (raw)

Abstract

We show that each loopless 2_k_-regular undirected graph on_n_ vertices has at least\(\left( {2^{ - k} \left( {_k^{2k} } \right)} \right)^n \) and at most\(\sqrt {\left( {_k^{2k} } \right)^n } \) eulerian orientations, and that, for each fixed_k_, these ground numbers are best possible.

Access this article

Log in via an institution

Subscribe and save

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. M. Brègman, Some properties of nonnegative matrices and their permanents,Soviet Math. Dokl. 14 (1973) 945–949 (English translation of:Dokl. Akad. Nauk SSSR 211 (1973) 27–30).
    MATH Google Scholar
  2. G. P. Egorychev, Solution of Van der Waerden’s permanent conjecture,Advances in Math. 42 (1981) 299–305.
    Article MATH MathSciNet Google Scholar
  3. P. Erdős andA. Rényi, On random matrices II,Studia Sci. Math. Hungar. 3 (1968) 459–464.
    MathSciNet Google Scholar
  4. D. I. Falikman, A proof of the Van der Waerden conjecture on the permanent of a doubly stochastic matrix.Mat. Zametki 29 (1981) 931–938 (Russian).
    MathSciNet Google Scholar
  5. D. E. Knuth, A permanent inequality,Amer. Math. Monthly 88 (1981) 731–740.
    Article MATH MathSciNet Google Scholar
  6. J. H. van Lint, Notes on Egoritsjev’s proof of the Van der Waerden conjecture,Linear Algebra and Appl. 39 (1981) 1–8.
    Article MATH MathSciNet Google Scholar
  7. H. Minc, Upper bounds for permanents of (0,1)-matrices,Bull. Amer. Math. Soc. 69 (1963) 789–791.
    Article MATH MathSciNet Google Scholar
  8. A. Schrijver, A short proof of Minc’s conjecture,J. Combinatorial Theory (A) 25 (1978) 80–83.
    Article MATH MathSciNet Google Scholar
  9. A. Schrijver andW. G. Valiant, On lower bounds for permanents,Indag. Math. 42 (1980) 425–427.
    MathSciNet Google Scholar
  10. M. Voorhoeve, A lower bound for the permanents of certain (0,1)-matrices,Indag. Math. 41 (1979) 83–86.
    MathSciNet Google Scholar
  11. B. L. van der Waerden, Aufgabe 45,Jahresber. Deutsch. Math.-Verein. 25 (1926) 117.
    Google Scholar
  12. H. S. Wilf, On the permanent of a doubly stochastic matrix,Canad. J. Math. 18 (1966) 758–761.
    MATH MathSciNet Google Scholar

Download references

Author information

Authors and Affiliations

  1. Department of Econometrics, Tilburg University, P.O. Box. 90153, 5000, LE Tilburg, The Netherlands
    A. Schrijver
  2. Mathematical Centre, Kruislaan 413, 1098, SJ Amsterdam, The Netherlands
    A. Schrijver

Authors

  1. A. Schrijver
    You can also search for this author inPubMed Google Scholar

Additional information

Dedicated to Paul Erdős on his seventieth birthday

Rights and permissions

About this article

Cite this article

Schrijver, A. Bounds on the number of Eulerian orientations.Combinatorica 3, 375–380 (1983). https://doi.org/10.1007/BF02579193

Download citation

AMS subject classification (1980)