Bounds on the number of Eulerian orientations (original) (raw)
Abstract
We show that each loopless 2_k_-regular undirected graph on_n_ vertices has at least\(\left( {2^{ - k} \left( {_k^{2k} } \right)} \right)^n \) and at most\(\sqrt {\left( {_k^{2k} } \right)^n } \) eulerian orientations, and that, for each fixed_k_, these ground numbers are best possible.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime Subscribe now
Buy Now
Price excludes VAT (USA)
Tax calculation will be finalised during checkout.
Instant access to the full article PDF.
Similar content being viewed by others
References
- L. M. Brègman, Some properties of nonnegative matrices and their permanents,Soviet Math. Dokl. 14 (1973) 945–949 (English translation of:Dokl. Akad. Nauk SSSR 211 (1973) 27–30).
MATH Google Scholar - G. P. Egorychev, Solution of Van der Waerden’s permanent conjecture,Advances in Math. 42 (1981) 299–305.
Article MATH MathSciNet Google Scholar - P. Erdős andA. Rényi, On random matrices II,Studia Sci. Math. Hungar. 3 (1968) 459–464.
MathSciNet Google Scholar - D. I. Falikman, A proof of the Van der Waerden conjecture on the permanent of a doubly stochastic matrix.Mat. Zametki 29 (1981) 931–938 (Russian).
MathSciNet Google Scholar - D. E. Knuth, A permanent inequality,Amer. Math. Monthly 88 (1981) 731–740.
Article MATH MathSciNet Google Scholar - J. H. van Lint, Notes on Egoritsjev’s proof of the Van der Waerden conjecture,Linear Algebra and Appl. 39 (1981) 1–8.
Article MATH MathSciNet Google Scholar - H. Minc, Upper bounds for permanents of (0,1)-matrices,Bull. Amer. Math. Soc. 69 (1963) 789–791.
Article MATH MathSciNet Google Scholar - A. Schrijver, A short proof of Minc’s conjecture,J. Combinatorial Theory (A) 25 (1978) 80–83.
Article MATH MathSciNet Google Scholar - A. Schrijver andW. G. Valiant, On lower bounds for permanents,Indag. Math. 42 (1980) 425–427.
MathSciNet Google Scholar - M. Voorhoeve, A lower bound for the permanents of certain (0,1)-matrices,Indag. Math. 41 (1979) 83–86.
MathSciNet Google Scholar - B. L. van der Waerden, Aufgabe 45,Jahresber. Deutsch. Math.-Verein. 25 (1926) 117.
Google Scholar - H. S. Wilf, On the permanent of a doubly stochastic matrix,Canad. J. Math. 18 (1966) 758–761.
MATH MathSciNet Google Scholar
Author information
Authors and Affiliations
- Department of Econometrics, Tilburg University, P.O. Box. 90153, 5000, LE Tilburg, The Netherlands
A. Schrijver - Mathematical Centre, Kruislaan 413, 1098, SJ Amsterdam, The Netherlands
A. Schrijver
Authors
- A. Schrijver
You can also search for this author inPubMed Google Scholar
Additional information
Dedicated to Paul Erdős on his seventieth birthday
Rights and permissions
About this article
Cite this article
Schrijver, A. Bounds on the number of Eulerian orientations.Combinatorica 3, 375–380 (1983). https://doi.org/10.1007/BF02579193
- Received: 03 February 1983
- Issue Date: September 1983
- DOI: https://doi.org/10.1007/BF02579193