Eliminating spurious poles from gauge-theoretic amplitudes (original) (raw)

Abstract

This note addresses the problem of spurious poles in gauge-theoretic scattering amplitudes. New twistor coordinates for the momenta are introduced, based on the concept of dual conformal invariance. The cancellation of spurious poles for a class of NMHV amplitudes is greatly simplified in these coordinates. The poles are eliminated altogether by defining a new type of twistor integral, dual to twistor diagrams as previously studied, and considerably simpler. The geometric features indicate a supersymmetric extension of the formalism at least to all NMHV amplitudes, allowing the dihedral symmetry of the super-amplitude to be made manifest. More generally, the definition of ‘momentum-twistor’ coordinates suggests a powerful new approach to the study of scattering amplitudes.

Access this article

Log in via an institution

Subscribe and save

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [INSPIRE].
    Article MathSciNet ADS Google Scholar
  2. N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the simplest quantum field theory?, JHEP 09 (2010) 016 [arXiv:0808.1446] [INSPIRE].
    Article MathSciNet ADS Google Scholar
  3. A.P. Hodges, Twistor diagrams for all tree amplitudes in gauge theory: a Helicity-independent formalism, hep-th/0512336 [INSPIRE].
  4. N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, The S-matrix in twistor space, JHEP 03 (2010) 110 [arXiv:0903.2110] [INSPIRE].
    Article MathSciNet ADS Google Scholar
  5. A.P. Hodges, Twistor diagram recursion for all gauge-theoretic tree amplitudes, hep-th/0503060 [INSPIRE].
  6. L. Mason and D. Skinner, Scattering amplitudes and BCFW recursion in twistor space, JHEP 01 (2010) 064 [arXiv:0903.2083] [INSPIRE].
    Article MathSciNet ADS Google Scholar
  7. A.P. Hodges, Scattering amplitudes for eight gauge fields, hep-th/0603101 [INSPIRE].
  8. N. Arkani-Hamed et al., Scattering amplitudes and the positive Grassmannian, arXiv:1212.5605 [INSPIRE].
  9. A. Brandhuber, P. Heslop and G. Travaglini, A note on dual superconformal symmetry of the N = 4 super Yang-Mills S-matrix, Phys. Rev. D 78 (2008) 125005 [arXiv:0807.4097] [INSPIRE].
    MathSciNet ADS Google Scholar
  10. J. Drummond, J. Henn, V. Smirnov and E. Sokatchev, Magic identities for conformal four-point integrals, JHEP 01 (2007) 064 [hep-th/0607160] [INSPIRE].
    Article MathSciNet ADS Google Scholar
  11. J. Drummond, J. Henn, G. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in N = 4 super-Yang-Mills theory, Nucl. Phys. B 828 (2010) 317 [arXiv:0807.1095] [INSPIRE].
    Article MathSciNet ADS Google Scholar
  12. A.P. Hodges, A twistor approach to the regularization of divergences, Proc. Roy. Soc. Lond. A 397 (1985) 341 [INSPIRE].
    MathSciNet ADS Google Scholar
  13. L. Mason and D. Skinner, Dual superconformal invariance, momentum twistors and Grassmannians, JHEP 11 (2009) 045 [arXiv:0909.0250] [INSPIRE].
    Article MathSciNet ADS Google Scholar
  14. N. Arkani-Hamed, F. Cachazo and C. Cheung, The Grassmannian origin of dual superconformal invariance, JHEP 03 (2010) 036 [arXiv:0909.0483] [INSPIRE].
    Article MathSciNet ADS Google Scholar
  15. J. Drummond and L. Ferro, Yangians, Grassmannians and T-duality, JHEP 07 (2010) 027 [arXiv:1001.3348] [INSPIRE].
    Article MathSciNet ADS Google Scholar
  16. J.L. Bourjaily, Efficient tree-amplitudes in N = 4_: automatic BCFW recursion in_ Mathematica, arXiv:1011.2447 [INSPIRE].
  17. N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, A. Hodges and J. Trnka, A note on polytopes for scattering amplitudes, JHEP 04 (2012) 081 [arXiv:1012.6030] [INSPIRE].
    Article MathSciNet ADS Google Scholar
  18. A. Hodges, The box integrals in momentum-twistor geometry, arXiv:1004.3323 [INSPIRE].
  19. L. Mason and D. Skinner, Amplitudes at weak coupling as polytopes in AdS5, J. Phys. A 44 (2011) 135401 [arXiv:1004.3498] [INSPIRE].
    MathSciNet ADS Google Scholar
  20. N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, S. Caron-Huot and J. Trnka, The all-loop integrand for scattering amplitudes in planar N = 4 SYM, JHEP 01 (2011) 041 [arXiv:1008.2958] [INSPIRE].
    Article MathSciNet ADS Google Scholar
  21. N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo and J. Trnka, Local integrals for planar scattering amplitudes, JHEP 06 (2012) 125 [arXiv:1012.6032] [INSPIRE].
    Article MathSciNet ADS Google Scholar
  22. A. Hodges, New expressions for gravitational scattering amplitudes, arXiv:1108.2227 [INSPIRE].
  23. A. Hodges, A simple formula for gravitational MHV amplitudes, arXiv:1204.1930 [INSPIRE].

Download references

Author information

Authors and Affiliations

  1. Mathematical Institute, 24-29 St Giles, Oxford, OX1 3LB, U.K.
    Andrew Hodges

Corresponding author

Correspondence toAndrew Hodges.

Additional information

Rights and permissions

About this article

Cite this article

Hodges, A. Eliminating spurious poles from gauge-theoretic amplitudes.J. High Energ. Phys. 2013, 135 (2013). https://doi.org/10.1007/JHEP05(2013)135

Download citation

Keywords