- K.G. Wilson, The Renormalization Group and Strong Interactions, Phys. Rev. D 3 (1971) 1818 [INSPIRE].
ADS Google Scholar
- K.G. Wilson, The Origins of lattice gauge theory, Nucl. Phys. Proc. Suppl. 140 (2005) 3 [hep-lat/0412043] [INSPIRE].
Article ADS Google Scholar
- L. Giusti, A. Romanino and A. Strumia, Natural ranges of supersymmetric signals, Nucl. Phys. B 550 (1999) 3 [hep-ph/9811386] [INSPIRE].
Article ADS Google Scholar
- R. Barbieri and A. Strumia, The ’_LEP paradox_’, hep-ph/0007265 [INSPIRE].
- A. Strumia, The Fine-tuning price of the early LHC, JHEP 04 (2011) 073 [arXiv:1101.2195] [INSPIRE].
Article ADS Google Scholar
- A. Arvanitaki, M. Baryakhtar, X. Huang, K. van Tilburg and G. Villadoro, The Last Vestiges of Naturalness, JHEP 03 (2014) 022 [arXiv:1309.3568] [INSPIRE].
Article ADS Google Scholar
- A.A. Starobinsky, A New Type of Isotropic Cosmological Models Without Singularity, Phys. Lett. B 91 (1980) 99 [INSPIRE].
Article ADS Google Scholar
- R. Fakir and W.G. Unruh, Improvement on cosmological chaotic inflation through nonminimal coupling, Phys. Rev. D 41 (1990) 1783 [INSPIRE].
ADS Google Scholar
- D.I. Kaiser, Primordial spectral indices from generalized Einstein theories, Phys. Rev. D 52 (1995) 4295 [astro-ph/9408044] [INSPIRE].
ADS Google Scholar
- S. Tsujikawa and B. Gumjudpai, Density perturbations in generalized Einstein scenarios and constraints on nonminimal couplings from the Cosmic Microwave Background, Phys. Rev. D 69 (2004) 123523 [astro-ph/0402185] [INSPIRE].
ADS Google Scholar
- F.L. Bezrukov and M. Shaposhnikov, The Standard Model Higgs boson as the inflaton, Phys. Lett. B 659 (2008) 703 [arXiv:0710.3755] [INSPIRE].
Article ADS Google Scholar
- F. Bezrukov, A. Magnin, M. Shaposhnikov and S. Sibiryakov, Higgs inflation: consistency and generalisations, JHEP 01 (2011) 016 [arXiv:1008.5157] [INSPIRE].
Article ADS Google Scholar
- C.P. Burgess, H.M. Lee and M. Trott, Power-counting and the Validity of the Classical Approximation During Inflation, JHEP 09 (2009) 103 [arXiv:0902.4465] [INSPIRE].
Article ADS Google Scholar
- J.L.F. Barbon and J.R. Espinosa, On the Naturalness of Higgs Inflation, Phys. Rev. D 79 (2009) 081302 [arXiv:0903.0355] [INSPIRE].
ADS Google Scholar
- A. Linde, Inflationary Cosmology after Planck 2013, arXiv:1402.0526 [INSPIRE].
- C.P. Burgess, S.P. Patil and M. Trott, On the Predictiveness of Single-Field Inflationary Models, arXiv:1402.1476 [INSPIRE].
- G.F. Giudice and H.M. Lee, Starobinsky-like inflation from induced gravity, arXiv:1402.2129 [INSPIRE].
- T. Prokopec and J. Weenink, Naturalness in Higgs inflation in a frame independent formalism, arXiv:1403.3219 [INSPIRE].
- J. Joergensen, F. Sannino and O. Svendsen, BICEP2 hints towards Quantum Corrections for Non-Minimally Coupled Inflationary Theories, arXiv:1403.3289 [INSPIRE].
- Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XXII. Constraints on inflation, arXiv:1303.5082 [INSPIRE].
- F. Englert, C. Truffin and R. Gastmans, Conformal Invariance in Quantum Gravity, Nucl. Phys. B 117 (1976) 407 [INSPIRE].
Article ADS Google Scholar
- C. Wetterich, Cosmology and the Fate of Dilatation Symmetry,” Nucl. Phys. B 302 (1988) 668 [INSPIRE]
Article ADS Google Scholar
- W. Bardeen, On Naturalness in the Standard Model, FERMILAB-CONF-95-391-T
- C.T. Hill, Conjecture on the physical implications of the scale anomaly, hep-th/0510177 [INSPIRE].
- R. Hempfling, The Next-to-minimal Coleman-Weinberg model, Phys. Lett. B 379 (1996) 153 [hep-ph/9604278] [INSPIRE].
Article ADS Google Scholar
- K.A. Meissner and H. Nicolai, Conformal Symmetry and the Standard Model, Phys. Lett. B 648 (2007) 312 [hep-th/0612165] [INSPIRE].
Article ADS MathSciNet Google Scholar
- J.P. Fatelo, J.M. Gerard, T. Hambye and J. Weyers, Symmetry breaking induced by top loops, Phys. Rev. Lett. 74 (1995) 492 [INSPIRE].
Article ADS Google Scholar
- T. Hambye, Symmetry breaking induced by top quark loops from a model without scalar mass, Phys. Lett. B 371 (1996) 87 [hep-ph/9510266] [INSPIRE].
Article ADS Google Scholar
- W.-F. Chang, J.N. Ng and J.M.S. Wu, Shadow Higgs from a scale-invariant hidden U(1)(s) model, Phys. Rev. D 75 (2007) 115016 [hep-ph/0701254] [INSPIRE].
ADS Google Scholar
- R. Foot, A. Kobakhidze and R.R. Volkas, Electroweak Higgs as a pseudo-Goldstone boson of broken scale invariance, Phys. Lett. B 655 (2007) 156 [arXiv:0704.1165] [INSPIRE].
Article ADS Google Scholar
- R. Foot, A. Kobakhidze, K. McDonald and R. Volkas, Neutrino mass in radiatively-broken scale-invariant models, Phys. Rev. D 76 (2007) 075014 [arXiv:0706.1829] [INSPIRE].
ADS Google Scholar
- R. Foot, A. Kobakhidze, K.L. McDonald and R.R. Volkas, A Solution to the hierarchy problem from an almost decoupled hidden sector within a classically scale invariant theory, Phys. Rev. D 77 (2008) 035006 [arXiv:0709.2750] [INSPIRE].
ADS Google Scholar
- S. Iso, N. Okada and Y. Orikasa, The minimal B-L model naturally realized at TeV scale, Phys. Rev. D 80 (2009) 115007 [arXiv:0909.0128] [INSPIRE].
ADS Google Scholar
- T. Hur and P. Ko, Scale invariant extension of the standard model with strongly interacting hidden sector, Phys. Rev. Lett. 106 (2011) 141802 [arXiv:1103.2571] [INSPIRE].
Article ADS Google Scholar
- L. Alexander-Nunneley and A. Pilaftsis, The Minimal Scale Invariant Extension of the Standard Model, JHEP 09 (2010) 021 [arXiv:1006.5916] [INSPIRE].
Article ADS Google Scholar
- S. Iso and Y. Orikasa, TeV Scale B-L model with a flat Higgs potential at the Planck scale - in view of the hierarchy problem -, PTEP 2013 (2013) 023B08 [arXiv:1210.2848] [INSPIRE].
- C. Englert, J. Jaeckel, V.V. Khoze and M. Spannowsky, Emergence of the Electroweak Scale through the Higgs Portal, JHEP 04 (2013) 060 [arXiv:1301.4224] [INSPIRE].
Article ADS Google Scholar
- E.J. Chun, S. Jung and H.M. Lee, Radiative generation of the Higgs potential, Phys. Lett. B 725 (2013) 158 [arXiv:1304.5815] [INSPIRE].
Article ADS Google Scholar
- M. Heikinheimo, A. Racioppi, M. Raidal, C. Spethmann and K. Tuominen, Physical Naturalness and Dynamical Breaking of Classical Scale Invariance, Mod. Phys. Lett. A 29 (2014) 1450077 [arXiv:1304.7006] [INSPIRE].
Article ADS MathSciNet Google Scholar
- T. Henz, J.M. Pawlowski, A. Rodigast and C. Wetterich, Dilaton Quantum Gravity, Phys. Lett. B 727 (2013) 298 [arXiv:1304.7743] [INSPIRE].
Article ADS MathSciNet Google Scholar
- T. Hambye and A. Strumia, Dynamical generation of the weak and Dark Matter scale, Phys. Rev. D 88 (2013) 055022 [arXiv:1306.2329] [INSPIRE].
ADS Google Scholar
- C.D. Carone and R. Ramos, Classical scale-invariance, the electroweak scale and vector dark matter, Phys. Rev. D 88 (2013) 055020 [arXiv:1307.8428] [INSPIRE].
ADS Google Scholar
- V.V. Khoze, Inflation and Dark Matter in the Higgs Portal of Classically Scale Invariant Standard Model, JHEP 11 (2013) 215 [arXiv:1308.6338] [INSPIRE].
Article ADS Google Scholar
- I. Quiros, Scale invariance and broken electroweak symmetry may coexist together, arXiv:1312.1018 [INSPIRE].
- I. Quiros, Scale invariant theory of gravity and the standard model of particles, arXiv:1401.2643 [INSPIRE].
- C.T. Hill, Is the Higgs Boson Associated with Coleman-Weinberg Dynamical Symmetry Breaking?, Phys. Rev. D 89 (2014) 073003 [arXiv:1401.4185] [INSPIRE].
ADS Google Scholar
- M. Farina, D. Pappadopulo and A. Strumia, A modified naturalness principle and its experimental tests, JHEP 08 (2013) 022 [arXiv:1303.7244] [INSPIRE].
ADS Google Scholar
- K.S. Stelle, Renormalization of Higher Derivative Quantum Gravity, Phys. Rev. D 16 (1977) 953 [INSPIRE].
ADS MathSciNet Google Scholar
- G. Magnano, M. Ferraris and M. Francaviglia, Nonlinear gravitational Lagrangians, Gen. Rel. Grav. 19 (1987) 465.
Article ADS MATH MathSciNet Google Scholar
- G. Magnano, M. Ferraris and M. Francaviglia, Legendre transformation and dynamical structure of higher derivative gravity, Class. Quant. Grav. 7 (1990) 557 [INSPIRE].
Article ADS MATH MathSciNet Google Scholar
- A. Jakubiec and J. Kijowski, On Theories of Gravitation With Nonlinear Lagrangians, Phys. Rev. D 37 (1988) 1406 [INSPIRE].
ADS MathSciNet Google Scholar
- J.C. Alonso, J.F. Barbero G., J. Julve and A. Tiemblo, Particle contents of higher derivative gravity, Class. Quant. Grav. 11 (1994) 865 [INSPIRE].
- A. Hindawi, B.A. Ovrut and D. Waldram, Consistent spin two coupling and quadratic gravitation, Phys. Rev. D 53 (1996) 5583 [hep-th/9509142] [INSPIRE].
ADS MathSciNet Google Scholar
- M. Ostrogradski, Memoires sur les equations differentielles relatives au probleme des isoperimetres, Mem. Ac. St. Petersbourg VI (1850) 385.
- A.V. Smilga, Ghost-free higher-derivative theory, Phys. Lett. B 632 (2006) 433 [hep-th/0503213] [INSPIRE].
Article ADS MathSciNet Google Scholar
- A. Mostafazadeh, A Hamiltonian Formulation of the Pais-Uhlenbeck Oscillator that Yields a Stable and Unitary Quantum System, Phys. Lett. A 375 (2010) 93 [arXiv:1008.4678] [INSPIRE].
Article ADS MathSciNet Google Scholar
- M. Pavsic, Stable Self-Interacting Pais-Uhlenbeck Oscillator, Mod. Phys. Lett. A 28 (2013) 1350165 [arXiv:1302.5257] [INSPIRE].
Article ADS Google Scholar
- A. Pais and G.E. Uhlenbeck, On Field theories with nonlocalized action, Phys. Rev. 79 (1950) 145 [INSPIRE].
Article ADS MATH MathSciNet Google Scholar
- T.D. Lee and G.C. Wick, Negative Metric and the Unitarity of the S Matrix, Nucl. Phys. B 9 (1969) 209 [INSPIRE].
Article ADS MathSciNet Google Scholar
- T.D. Lee and G.C. Wick, Unitarity in the N θθ Sector of Soluble Model With Indefinite Metric, Nucl. Phys. B 10 (1969) 1 [INSPIRE].
Article ADS MathSciNet Google Scholar
- T.D. Lee and G.C. Wick, Finite Theory of Quantum Electrodynamics, Phys. Rev. D 2 (1970) 1033 [INSPIRE].
ADS MathSciNet Google Scholar
- N. Nakanishi, Lorentz noninvariance of the complex-ghost relativistic field theory, Phys. Rev. D 3 (1971) 811 [INSPIRE].
ADS Google Scholar
- T.D. Lee and G.C. Wick, Questions of Lorentz Invariance in Field Theories With Indefinite Metric, Phys. Rev. D 3 (1971) 1046 [INSPIRE].
ADS Google Scholar
- S.W. Hawking and T. Hertog, Living with ghosts, Phys. Rev. D 65 (2002) 103515 [hep-th/0107088] [INSPIRE].
ADS MathSciNet Google Scholar
- C.M. Bender and P.D. Mannheim, No-ghost theorem for the fourth-order derivative Pais-Uhlenbeck oscillator model, Phys. Rev. Lett. 100 (2008) 110402 [arXiv:0706.0207] [INSPIRE].
Article ADS Google Scholar
- R.E. Cutkosky, P.V. Landshoff, D.I. Olive and J.C. Polkinghorne, A non-analytic S matrix, Nucl. Phys. B 12 (1969) 281 [INSPIRE].
Article ADS Google Scholar
- N. Nakanishi, Remarks on the complex-ghost relativistic field theory, Phys. Rev. D 3 (1971) 3235 [INSPIRE].
ADS Google Scholar
- D.G. Boulware, G.T. Horowitz and A. Strominger, Zero Energy Theorem for Scale Invariant Gravity, Phys. Rev. Lett. 50 (1983) 1726 [INSPIRE].
Article ADS MathSciNet Google Scholar
- E.S. Fradkin and A.A. Tseytlin, Conformal supergravity, Phys. Rept. 119 (1985) 233 [INSPIRE].
Article ADS MathSciNet Google Scholar
- R.P. Woodard, Avoiding dark energy with 1/r modifications of gravity, Lect. Notes Phys. 720 (2007) 403 [astro-ph/0601672] [INSPIRE].
Article ADS Google Scholar
- A.V. Smilga, Comments on the dynamics of the Pais-Uhlenbeck oscillator, SIGMA 5 (2009) 017 [arXiv:0808.0139] [INSPIRE].
MathSciNet Google Scholar
- J. Maldacena, Einstein Gravity from Conformal Gravity, arXiv:1105.5632 [INSPIRE].
- G. ’t Hooft, A class of elementary particle models without any adjustable real parameters, Found. Phys. 41 (2011) 1829 [arXiv:1104.4543] [INSPIRE].
Article ADS MATH MathSciNet Google Scholar
- M.E. Machacek and M.T. Vaughn, Two Loop Renormalization Group Equations in a General Quantum Field Theory. 1. Wave Function Renormalization, Nucl. Phys. B 222 (1983) 83 [INSPIRE].
Article ADS Google Scholar
- M.E. Machacek and M.T. Vaughn, Two Loop Renormalization Group Equations in a General Quantum Field Theory. 2. Yukawa Couplings, Nucl. Phys. B 236 (1984) 221 [INSPIRE].
Article ADS Google Scholar
- M.E. Machacek and M.T. Vaughn, Two Loop Renormalization Group Equations in a General Quantum Field Theory. 3. Scalar Quartic Couplings, Nucl. Phys. B 249 (1985) 70 [INSPIRE].
Article ADS Google Scholar
- R. Mertig, M. Böhm and A. Denner, FEYN CALC: Computer algebraic calculation of Feynman amplitudes, Comput. Phys. Commun. 64 (1991) 345 [INSPIRE].
Article ADS Google Scholar
- T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].
Article ADS MATH Google Scholar
- R.P. Woodard, The Vierbein Is Irrelevant in Perturbation Theory, Phys. Lett. B 148 (1984) 440 [INSPIRE].
Article ADS MathSciNet Google Scholar
- R. Contino, L. Pilo, R. Rattazzi and A. Strumia, Graviton loops and brane observables, JHEP 06 (2001) 005 [hep-ph/0103104] [INSPIRE].
Article ADS MathSciNet Google Scholar
- G. Narain and R. Anishetty, Running Couplings in Quantum Theory of Gravity Coupled with Gauge Fields, JHEP 10 (2013) 203 [arXiv:1309.0473] [INSPIRE].
Article ADS MathSciNet Google Scholar
- M. Shaposhnikov and C. Wetterich, Asymptotic safety of gravity and the Higgs boson mass, Phys. Lett. B 683 (2010) 196 [arXiv:0912.0208] [INSPIRE].
Article ADS Google Scholar
- E. Elizalde, S.D. Odintsov and A. Romeo, Renormalization group properties of higher derivative quantum gravity with matter in (4-epsilon)-dimensions, Nucl. Phys. B 462 (1996) 315 [hep-th/9502131] [INSPIRE].
Article ADS MathSciNet Google Scholar
- I.L. Buchbinder, D.D. Odintsov and I.L. Shapiro, Effective Action in Quantum Gravity, IOP (1992).
- E.V. Gorbar and I.L. Shapiro, Renormalization group and decoupling in curved space. 2. The Standard model and beyond, JHEP 06 (2003) 004 [hep-ph/0303124] [INSPIRE].
Article ADS MathSciNet Google Scholar
- Y. Yoon and Y. Yoon, Asymptotic conformal invariance of SU(2) and standard models in curved space-time, Int. J. Mod. Phys. A 12 (1997) 2903 [hep-th/9612001] [INSPIRE].
Article ADS Google Scholar
- I.G. Avramidi, Covariant methods for the calculation of the effective action in quantum field theory and investigation of higher derivative quantum gravity, hep-th/9510140 [INSPIRE].
- E.S. Fradkin and A.A. Tseytlin, Renormalizable asymptotically free quantum theory of gravity, Nucl. Phys. B 201 (1982) 469 [INSPIRE].
Article ADS MathSciNet Google Scholar
- G ‘t Hooft and M. Veltman, One loop divergencies in the theory of gravitation, Annal. IHP A 20 (1974) 69.
MathSciNet Google Scholar
- S. Deser and P. van Nieuwenhuizen, One Loop Divergences of Quantized Einstein-Maxwell Fields, Phys. Rev. D 10 (1974) 401.
ADS Google Scholar
- S. Deser and P. van Nieuwenhuizen, Nonrenormalizability of the Quantized Dirac-Einstein System, Phys. Rev. D 10 (1974) 411.
ADS Google Scholar
- A.D. Sakharov, Vacuum quantum fluctuations in curved space and the theory of gravitation, Sov. Phys. Dokl. 12 (1968) 1040 [INSPIRE].
ADS Google Scholar
- D. Buttazzo et al., Investigating the near-criticality of the Higgs boson, JHEP 12 (2013) 089 [arXiv:1307.3536] [INSPIRE].
Article ADS MathSciNet Google Scholar
- D.H. Lyth, What would we learn by detecting a gravitational wave signal in the cosmic microwave background anisotropy?, Phys. Rev. Lett. 78 (1997) 1861 [hep-ph/9606387] [INSPIRE].
Article ADS Google Scholar
- M. Sher, The Renormalization Group and Inflationary Potentials, Phys. Lett. B 135 (1984) 52 [INSPIRE].
Article ADS Google Scholar
- A. Arvanitaki and S. Dimopoulos, private communication.
- M.M. Anber, J.F. Donoghue and M. El-Houssieny, Running couplings and operator mixing in the gravitational corrections to coupling constants, Phys. Rev. D 83 (2011) 124003 [arXiv:1011.3229] [INSPIRE].
ADS Google Scholar
- L. Randall, Composite axion models and Planck scale physics, Phys. Lett. B 284 (1992) 77 [INSPIRE].
Article ADS Google Scholar